Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 014203    DOI: 10.1088/0256-307X/36/1/014203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential
Yun-Cheng Liao1, Bin Liu1**, Juan Liu1, Jia Chen2
1National Engineering Laboratory for Destructive Testing and Optoelectronic Sensing Technology and Application, Nanchang HangKong University, Nanchang 330063
2Nanchang Institute of Science and Technology, Nanchang 3301608
Cite this article:   
Yun-Cheng Liao, Bin Liu, Juan Liu et al  2019 Chin. Phys. Lett. 36 014203
Download: PDF(3077KB)   PDF(mobile)(3068KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential (just as a sharp 'razor') into the complex Ginzburg–Landau equation with the cubic-quintic nonlinearity. The potentials corresponding to a local refractive index modulation with breaking symmetry can be realized in an active optical medium with respective expanding antiwaveguiding structures. Using the razor potential acting on a central dissipative soliton, possible outcomes of asymmetric and single-side splitting of dissipative solitons are achieved with setting different strengths and steepness of the potentials. The results can potentially be used to design a multi-route splitter for light beams.
Received: 17 September 2018      Published: 25 December 2018
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61665007, and the Natural Science Foundation of Jiangxi Province under Grant No 20161BAB202039.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/014203       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/014203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Cheng Liao
Bin Liu
Juan Liu
Jia Chen
[1]Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99
[2]Malomed B A 2005 Encyclopedia Nonlinear Sci. p 157
[3]Bakonyi Z, Michaelis D et al 2002 J. Opt. Soc. Am. B 19 487
[4]Ultanir E A, Stegeman G I et al 2003 Phys. Rev. Lett. 90 253903
[5]Petviashvili V I and Sergeev A M 1984 Dokl. Akad. Nauk SSSR 276 1380
[6]Akhmediev N N, Ankiewicz A et al 1998 J. Opt. Soc. Am. B 15 515
[7]Boudebs G, Cherukulappurath S et al 2003 Opt. Commun. 219 427
[8]Zhan C, Zhu D, Li D et al 2002 J. Opt. Soc. Am. B 19 369
[9]Mihalache D, Mazilu D, Lederer F et al 2006 Phys. Rev. Lett. 97 073904
[10]Vladimirov A G, McSloy J M, Skryabin D V et al 2002 Phys. Rev. E 65 046606
[11]Skryabin D V and Vladimirov A G 2002 Phys. Rev. Lett. 89 044101
[12]Li H, Lai S, Qui Y et al 2017 Opt. Express 25 27948
[13]He Y J, Wang H Z and Malomed B A 2007 Opt. Express 15 17502
[14]Liu B, He Y J, Qiu Z R et al 2009 Opt. Express 17 12203
[15]He Y J, Malomed B A, Mihalache D et al 2009 Opt. Lett. 34 2976
[16]Djoko M and Kofane T C 2017 Commun. Nonlinear Sci. & Numer. Simul. 48 179
[17]Mihalache D, Mazilu D, Lederer F et al 2009 Eur. Phys. J. Spec. Top. 173 245
[18]Liu B, He X D and Li S J 2011 Phys. Rev. E 84 056607
[19]Liu B, Liu Y F and He X D 2014 Opt. Express 22 26203
[20]Skarka V, Aleksić N B et al 2017 Opt. Express 25 10090
[21]He Y J, Malomed B A, Ye F et al 2010 J. Opt. Soc. Am. B 27 1139
[22]Liu B and He X D 2011 Opt. Express 19 20009
[23]Liu B, He X D and Li S J 2013 Opt. Express 21 5561
[24]Cleff C, Gütlich B and Denz C 2008 Phys. Rev. Lett. 100 233902
[25]Szameit A, Burghoff J et al 2006 Opt. Express 14 6055
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 014203
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 014203
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 014203
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 014203
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 014203
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 014203
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 014203
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 014203
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 014203
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 014203
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 014203
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 014203
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 014203
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 014203
[15] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 014203
Viewed
Full text


Abstract