Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 088401    DOI: 10.1088/0256-307X/35/8/088401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Simulation of Synergism Effect Using Temperature Switching Irradiation on Bipolar Comparator
Xin Yu1,2, Wu Lu1,2**, Shuai Yao1,2,3, Qi Guo1,2, Jing Sun1,2, Xin Wang1,2, Mo-Han Liu1,2, Xiao-Long Li1,2,3
1Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011
2Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Xin Yu, Wu Lu, Shuai Yao et al  2018 Chin. Phys. Lett. 35 088401
Download: PDF(694KB)   PDF(mobile)(696KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The synergism effect of total ionizing dose (TID) on a single event transient (SET) in a bipolar comparator is investigated. Experimental results show that the shapes of the SET are considerably influenced by the TID accumulated in low dose rates. The variation tendency of SET shapes can be accurately simulated by temperature switching irradiation. The mechanism of this synergism effect is also analyzed in brief via the operating schematic of a comparator. After the accumulation of 100 krad(Si), the lower tendency of negative SET can be attributed to the degeneration of $\beta$. The change tendency of a positive SET, either lower or higher, is dependent on the load condition that limits the output range of the comparator.
Received: 27 April 2018      Published: 15 July 2018
PACS:  84.30.Qi (Modulators and demodulators; discriminators, comparators, mixers, limiters, and compressors)  
  85.30.Pq (Bipolar transistors)  
  28.90.+i (Other topics in nuclear engineering and nuclear power studies)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos U1532261 and U1630141.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/088401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/088401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Yu
Wu Lu
Shuai Yao
Qi Guo
Jing Sun
Xin Wang
Mo-Han Liu
Xiao-Long Li
[1]Koga R, Pinkerton S D, Moss S C et al 1993 IEEE Trans. Nucl. Sci. 40 1838
[2]Ecoffet R, Duzellier S, Tastet P et al 1994 IEEE Radiat. Eff. Data Workshop 72
[3]Harboe-Sorensen R, Daly E, Teston F et al 2002 IEEE Trans. Nucl. Sci. 49 1345
[4]Pritchard B E, Swift G M and Johnston A H 2002 IEEE Radiat. Eff. Data Workshop 7
[5]Poivey C, Barth J L, McCabe J et al 2003 Proc. RADECS Conf. (Padova, Italy 19–20 September 2002) p 43
[6]Testing Guidelines for Single Event Transient (SET) Testing of Linear Devices GSFC (NASA Goddard Space Flight Center)
[7]Bernard M F, Dusseau L, Buchner S et al 2007 IEEE Trans. Nucl. Sci. 54 2534
[8]Buchner S, McMorrow D, Roche N et al 2008 IEEE Trans. Nucl. Sci. 55 3314
[9]Buchner S, McMorrow D, Roche N et al 2008 IEEE Trans. Nucl. Sci. 55 2055
[10]Turflinger T L, Campbell A B, Schmeichel W M et al 2003 IEEE Trans. Nucl. Sci. 50 2328
[11]Test Method Standard MIL-STD-883J 2014 DoD Method 1019.9
[12]Lu W, Ren D Y et al 2009 At. Energy Sci. Technol. 43 669 (in Chinese)
[13]Li X L, Lu W, Wang X et al 2018 Chin. Phys. B 27 036102
[14]Li X L, Lu W et al 2018 Acta Phys. Sin. 67 096101
[15]Li X L, Lu W and Ma W Y et al 2016 Proc. RADECS Conf. (Bremen, Germany 19–23 September 2016) p 31
[16]Zheng Y Z, Lu W et al 2010 Nucl. Tech. 33 357 (in Chinese)
[17]Wang Y Y et al 2011 J. Semicond. 32 034007
Viewed
Full text


Abstract