Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 078801    DOI: 10.1088/0256-307X/35/7/078801
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells
Bing-zhen Chen**, Yang Zhang, Qing Wang, Zhi-yong Wang
Institute of Laser Engineering, Beijing University of Technology, Beijing 100022
Cite this article:   
Bing-zhen Chen, Yang Zhang, Qing Wang et al  2018 Chin. Phys. Lett. 35 078801
Download: PDF(729KB)   PDF(mobile)(725KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaInNAs with bandgap 1.0 eV is a promising material for multi-junction solar cell applications. However, the poor quality of GaInNAs grown by metalorganic chemical vapor deposition hinders its device performance. Here to reap the benefits of 1.0-eV sub-cell, we focus on the optimization of annealing temperature and growth ambient of GaInNAs. The GaInNAs sub-cell exhibits a concentration reduction of shallow level defects when it is annealed at 700 $\,^{\circ}\!$C for 20 min. As compared with the growth case using a hydrogen ambient, the N incorporation efficiency of GaInNAs can be enhanced during the growth in an N$_{2}$ ambient. Furthermore, background carbon concentration is observed to reduce in the as-grown GaInNAs epilayer. A GaInNAs sub-cell with 82% peak external quantum efficiency is obtained in a dual-junction GaInNAs/Ge solar cell. Finally, a monolithic AlGaInP/AlGaInAs/GaInAs/GaInNAs/Ge five-junction solar cell is grown for space application. The fabricated device shows a conversion efficiency of 31.09% and a short-circuit current density of 11.81 mA/cm$^{2}$ under 1 sun AM 0 illumination.
Received: 26 April 2018      Published: 24 June 2018
PACS:  88.40.jm (Thin film III-V and II-VI based solar cells)  
  88.40.jp (Multijunction solar cells)  
  88.40.hj (Efficiency and performance of solar cells)  
  81.05.Ea (III-V semiconductors)  
  06.60.Ei (Sample preparation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/078801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/078801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing-zhen Chen
Yang Zhang
Qing Wang
Zhi-yong Wang
[1]Wilt D M and Stan M 2012 Ind. Eng. Chem. Res. 51 11931
[2]Ermer J H, Jones R K, Hebert P et al 2012 IEEE J. Photovoltaics 2 209
[3]Zhang L, Niu P, Li Y et al 2017 AIP Adv. 7 125217
[4]King R R, Fetzer C, Chiu P et al 2012 5th SiGe, Ge, and Related Compounds: Materials, Processing and Devices Symposium–220th ECS Meeting (Honolulu, USA 7–12 October 2012) 50 287
[5]Dimroth F, Tibbits T N D, Niemeyer M et al 2016 IEEE J. Photovoltaics 6 343
[6]Wiemer M, Sabnis V and Yuen H 2011 Proc. SPIE 8108 High and Low Concentrator Systems for Solar Electric Applications VI (San Diego, USA 22–24 August 2011) p 810804
[7]Chiu P T, Law D C, Woo R L et al 2014 IEEE J. Photovoltaics 4 493
[8]King R R, Bhusari D, Boca A et al 2011 Prog. Photovoltaics 19 797
[9]King R R, Colter P C, Joslin D E et al 2002 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA 19–24 May 2002) p 852
[10]Dimroth F, Baur C, Meusel M et al 2003 The 3rd World Conference Photovoltaic Energy Conversion (Osaka, Japan 11–18 May 2003) p 616
[11]Zhang Y, Wang Q, Zhang X et al 2017 Chin. Phys. Lett. 34 028802
[12]Zhang Y, Wang Q, Zhang X et al 2017 Jpn. J. Appl. Phys. 56 025501
[13]Jackrel D B, Bank S R, Yuen H B et al 2007 J. Appl. Phys. 101 114916
[14]Garrod T J, Kirch J, Dudley P et al 2011 J. Cryst. Growth 315 68
[15]Miyamoto T, Kageyama T, Makino S et al 2000 J. Cryst. Growth 209 339
[16]Ptak A J, Johnston S W, Kurtz S et al 2003 J. Cryst. Growth 251 392
[17]Sin Y, Lingley Z, LaLumondiere S et al 2014 Proc. SPIE 8981 Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III (San Francisco, USA 3–6 February 2014) p 89811A
[18]Wu T H and Su Y K 2012 Sol. Energy Mater. Sol. Cells 107 344
[19]Dimrotha F, Baura C, Betta A W et al 2004 J. Cryst. Growth 272 726
[20]Volz K, Torunski T and Stolz W 2005 J. Appl. Phys. 97 014306
[21]Volz K, Lackner D, Nemeth I et al 2008 J. Cryst. Growth 310 2222
[22]Abulfotuh F, Balcioglu A, Friedman A et al 1998 AIP Conf. Proc. 462 492
[23]Allerman A A, Follstaedt D M, Gee J M et al 2004 Direct Measurement of Mercury Reactions in Coal Power Plant Plumes (U.S. Department of Energy)
[24]Kurtz S, King R, Law Daniel et al 2013 Photovoltaic Specialist Conference (Tampa, USA 16–21 June 2013) p 6744887
[25]Moto A, Takahashi M and Takagishi S 2000 J. Cryst. Growth 221 485
[26]Lee R T and Stringfellow G B 1998 J. Electron. Mater. 28 963
Related articles from Frontiers Journals
[1] ZHANG Dong-Yan, ZHENG Xin-He, LI Xue-Fei, WU Yuan-Yuan, WANG Jian-Feng, YANG Hui. High Concentration InGaN/GaN Multi-Quantum Well Solar Cells with a Peak Open-Circuit Voltage of 2.45 V[J]. Chin. Phys. Lett., 2012, 29(6): 078801
Viewed
Full text


Abstract