Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 078501    DOI: 10.1088/0256-307X/35/7/078501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength
Ben Du1,2, Yi Gu1, Yong-Gang Zhang1**, Xing-You Chen1, Ying-Jie Ma1, Yan-Hui Shi1,2, Jian Zhang1,2
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Ben Du, Yi Gu, Yong-Gang Zhang et al  2018 Chin. Phys. Lett. 35 078501
Download: PDF(724KB)   PDF(mobile)(720KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a wavelength extended InGaAsBi short-wave infrared photodetector on an InP substrate with the 50% cutoff wavelength up to 2.63 μm at room temperature. The moderate growth temperature is applied to balance the Bi incorporation and material quality. Photoluminescence and x-ray diffraction reciprocal space mapping measurements reveal the contents of bismuth and indium in InGaAsBi to be about 2.7% and 76%, respectively. The InGaAsBi detector shows the temperature-insensitive cutoff wavelength with a low coefficient of about 0.96 nm/K. The demonstration indicates the InP-based InGaAsBi material is a promising candidate for wavelength extended short-wave infrared detectors working.
Received: 24 January 2018      Published: 24 June 2018
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.61.Ey (III-V semiconductors)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0402400, the National Basic Research Program of China under Grant No 2014CB643900, the National Natural Science Foundation of China under Grant Nos 61775228, 61605232, 61675225 and 61334004, and the Shanghai Rising-Star Program under Grant No 17QA1404900.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/078501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/078501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ben Du
Yi Gu
Yong-Gang Zhang
Xing-You Chen
Ying-Jie Ma
Yan-Hui Shi
Jian Zhang
[1]Hoogeveen R W M, van der A R J and Goede A P H 2001 Infrared Phys. Technol. 42 1
[2]Zhang Y G, Gu Y, Tian Z B et al 2009 J. Cryst. Growth 311 1881
[3]Zhang Y G, Gu Y, Tian Z B et al 2008 Infrared Phys. Technol. 51 316
[4]Paul S, Roy J B and Basu P K 1991 J. Appl. Phys. 69 827
[5]Tominaga Y, Oe K and Yoshimoto M 2010 Appl. Phys. Express 3 062201
[6]Oe K and Okamoto H 1998 Jpn. J. Appl. Phys. 37 L1283
[7]Feng G, Yoshimoto M, Oe K et al 2005 Jpn. J. Appl. Phys. 44 L1161
[8]Zhong Y, Dongmo P B, Petropoulos J P et al 2012 Appl. Phys. Lett. 100 112110
[9]Chen X Y, Gu Y, Zhang Y G et al 2016 AIP Adv. 6 075215
[10]Gu Y, Zhang Y G, Chen X Y et al 2016 Appl. Phys. Lett. 108 032102
[11]Feng G, Oe K and Yoshimoto M 2007 J. Cryst. Growth 301 121
[12]Pettinari G, Polimeni A, Capizzi M et al 2008 Appl. Phys. Lett. 92 262105
[13]Alberi K, Dubon O D, Walukiewicz W et al 2007 Appl. Phys. Lett. 91 051909
[14]Okamoto H and Oe K 1999 Jpn. J. Appl. Phys. 38 1022
[15]Zhou L, Zhang Y G, Gu Y et al 2015 J. Alloys Compd. 619 52
[16]Gu Y, Zhou L, Zhang Y G et al 2015 Appl. Phys. Express 8 022202
[17]Li C, Zhang Y G, Wang K et al 2010 Infrared Phys. Technol. 53 173
[18]Klem J F, Kim J K, Cich M J et al 2009 Appl. Phys. Lett. 95 031112
[19]Du B, Gu Y, Zhang Y G et al 2016 J. Cryst. Growth 440 1
Related articles from Frontiers Journals
[1] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 078501
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 078501
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 078501
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 078501
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 078501
[6] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 078501
[7] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 078501
[8] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 078501
[9] Ming Wei, Chun-Xiang Xu, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector[J]. Chin. Phys. Lett., 2017, 34(7): 078501
[10] Dong-Wei Jiang, Wei Xiang, Feng-Yun Guo, Hong-Yue Hao, Xi Han, Xiao-Chao Li, Guo-Wei Wang, Ying-Qiang Xu, Qing-Jiang Yu, Zhi-Chuan Niu. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength[J]. Chin. Phys. Lett., 2016, 33(04): 078501
[11] Yang Li, Sheng-Kai Liao, Fu-Tian Liang, Qi Shen, Hao Liang, Cheng-Zhi Peng. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array[J]. Chin. Phys. Lett., 2016, 33(03): 078501
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 078501
[13] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 078501
[14] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 078501
[15] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 078501
Viewed
Full text


Abstract