Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 070301    DOI: 10.1088/0256-307X/35/7/070301
GENERAL |
Period-Doubled Bloch States in a Bose–Einstein Condensate
Bao-Guo Yang1, Peng-Ju Tang1, Xin-Xin Guo1, Xu-Zong Chen1, Biao Wu2**, Xiao-Ji Zhou1**
1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
2International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
Cite this article:   
Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo et al  2018 Chin. Phys. Lett. 35 070301
Download: PDF(659KB)   PDF(mobile)(650KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study systematically the period-doubled Bloch states for a weakly interacting Bose–Einstein condensate in a one-dimensional optical lattice. This kind of state is of form $\psi_k=e^{ikx}\phi_k(x)$, where $\phi_k(x)$ is of a period twice the optical lattice constant. Our numerical results show how these nonlinear period-doubled states grow out of linear period-doubled states at a quarter away from the Brillouin zone center as the repulsive interatomic interaction increases. This is corroborated by our analytical results. We find that all nonlinear period-doubled Bloch states have both Landau instability and dynamical instability.
Received: 02 May 2018      Published: 24 June 2018
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  67.85.Bc (Static properties of condensates)  
  67.85.De (Dynamic properties of condensates; excitations, and superfluid flow)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301501 and 2017YFA0303302, and the National Natural Science Foundation of China under Grants Nos 11334001, 61727819, 61475007 and 91736208.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/070301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/070301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bao-Guo Yang
Peng-Ju Tang
Xin-Xin Guo
Xu-Zong Chen
Biao Wu
Xiao-Ji Zhou
[1]Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2]Greiner M, Mandel M O, Esslinger T, Hänsch T and Bloch I 2002 Nature 415 39
[3]Li B and Chen J B 2010 Chin. Phys. Lett. 27 123701
[4]Wang X R, Yang Lu, Tan X Z, Xiong H W and Lü B L 2009 Chin. Phys. Lett. 26 083701
[5]Zhu R 2007 Chin. Phys. Lett. 24 797
[6]Zhu Q Z and Wu B 2015 Chin. Phys. B 24 050507
[7]Qi W, Li Z H and Liang Z X 2018 Chin. Phys. Lett. 35 010301
[8]Xu Z, Duan Y F, Zhou S Y, Hong T and Wang Y Z 2009 Chin. Phys. Lett. 26 090303
[9]Jiang X, Lin M M, Li S C and Duan W S 2009 Chin. Phys. Lett. 26 013701
[10]Diakonov D, Jensen L M, Pethick C J and Smith H 2002 Phys. Rev. A 66 013604
[11]Machholm M, Pethick C J and Smith H 2003 Phys. Rev. A 67 053613
[12]Wu B and Niu Q 2000 Phys. Rev. A 61 023402
[13]Wu B, Diener R B and Niu Q 2002 Phys. Rev. A 65 025601
[14]Wu B and Niu Q 2003 New J. Phys. 5 104
[15]Chen Z and Wu B 2011 Phys. Rev. Lett. 107 065301
[16]Mueller E J 2002 Phys. Rev. A 66 063603
[17]Seaman B T, Carr L D and Holland M J 2005 Phys. Rev. A 72 033602
[18]Wang D L, Yan X H and Wang F J 2007 Chin. Phys. Lett. 24 1817
[19]Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein P, Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401
[20]Zhang Y P, Liang Z X and Wu B 2009 Phys. Rev. A 80 063815
[21]Machholm M, Nicolin A, Pethick C J and Smith H 2004 Phys. Rev. A 69 043604
[22]Gemelke N, Sarajlic E, Bidel Y, Hong S and Chu S 2005 Phys. Rev. Lett. 95 170404
[23]Gross E P 1963 J. Math. Phys. 4 195
Pitaevskii L P 1961 Zh. Eksp. Teor. Fiz. 13 451
[24]Görlitz A, Vogels J M, Leanhardt A E, Raman C, Gustavson T L, Abo-Shaeer J R, Chikkatur A P, Gupta S, Inouye S, Rosenb T and Ketterle W 2001 Phys. Rev. Lett. 87 130402
[25]Cristiani M, Morsch O, Müller J H, Ciampini D and Arimondo E 2002 Phys. Rev. A 65 063612
[26]Wu B and Niu Q 2001 Phys. Rev. A 64 061603
[27]Cataliotti F S, Fallani L, Ferlaino F, Fort C, Maddaloni P and Inguscio M 2003 New J. Phys. 5 71
[28]Fallani L, De Sarlo L, Lye J E, Modugno M, Saers R, Fort C and Inguscio M 2004 Phys. Rev. Lett. 93 140406
[29]Sarlo L D, Fallani L, Lye J E, Modugno M, Saers R, Fort C and Inguscio M 2005 Phys. Rev. A 72 013603
[30]Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402
[31]Bronski J C, Carr L D, Deconinck B, Kutz J N and Promislow K 2001 Phys. Rev. E 63 036612
[32]Smerzi A, Trombettoni A, Kevrekidis P G and Bishop A R 2002 Phys. Rev. Lett. 89 170402
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 070301
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 070301
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 070301
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 070301
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 070301
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 070301
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 070301
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 070301
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 070301
[11] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 070301
[12] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 070301
[13] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 070301
[14] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 070301
[15] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 070301
Viewed
Full text


Abstract