Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 062102    DOI: 10.1088/0256-307X/35/6/062102
NUCLEAR PHYSICS |
Giant Monopole Resonance and Nuclear Incompressibility of Hypernuclei
Hong Lv1, Shi-Sheng Zhang2, Zhen-Hua Zhang1, Yu-Qian Wu1, Jiang Liu1, Li-Gang Cao1**
1School of Mathematics and Physics, North China Electric Power University, Beijing 102206
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
Cite this article:   
Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang et al  2018 Chin. Phys. Lett. 35 062102
Download: PDF(583KB)   PDF(mobile)(561KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The isoscalar giant monopole resonances (ISGMRs) of hypernuclei $^{42}_{{\Lambda}{\Lambda}}$Ca, $^{122}_{{\Lambda}{\Lambda}}$Sn, and $^{210}_{{\Lambda}{\Lambda}}$Pb are investigated using a fully self-consistent Skyrme–Hartree–Fock plus random phase approximation method. The Skyrme-type forces, SGII, No.5 and S${\Lambda}{\Lambda}$1, are adopted to describe the nucleon–nucleon, ${\Lambda}$ hyperon–nucleon and ${\Lambda}$ hyperon–${\Lambda}$ hyperon (${\Lambda} {\Lambda}$) interactions, respectively. For a given hyperon fraction, we find that effects of ${\Lambda} {\Lambda}$ interaction on the properties of infinite symmetric nuclear matter and finite hypernuclei are very small. The ISGMR strengths are shifted to the high energy region when two ${\Lambda}$ are added into normal nuclei. The changes are from two parts, one is due to the mean field calculations, and the other is from the residual interaction associated with ${\Lambda}$ hyperons. The constrained energies are increased by about 0.5–0.7 MeV, which consequently enhances the effective incompressibility modulus of hypernuclei.
Received: 12 February 2018      Published: 19 May 2018
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  21.80.+a (Hypernuclei)  
  24.30.Cz (Giant resonances)  
  21.30.-x (Nuclear forces)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11575060, 11775014, 11505058 and 11435014.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/062102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/062102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong Lv
Shi-Sheng Zhang
Zhen-Hua Zhang
Yu-Qian Wu
Jiang Liu
Li-Gang Cao
[1]Blaizot J P 1980 Phys. Rep. 64 171
[2]Shlomo S et al 2006 Eur. Phys. J. A 30 23
[3]Youngblood D H et al 2004 Phys. Rev. C 69 034315
[4]Youngblood D H et al 1999 Phys. Rev. Lett. 82 691
[5]Patel D et al 2014 Phys. Lett. B 735 387
[6]Ma Z Y et al 1997 Phys. Rev. C 55 2385
[7]Ma Z Y et al 2002 Nucl. Phys. A 703 222
[8]Yang D et al 2010 Phys. Rev. C 82 054305
[9]Colò G et al 2004 Phys. Rev. C 70 024307
[10]Vretenar D et al 2003 Phys. Rev. C 68 024310
[11]Piekarewicz J 2004 Phys. Rev. C 69 041301(R)
[12]Agrawal B K et al 2003 Phys. Rev. C 68 031304
[13]Shlomo S et al 1993 Phys. Rev. C 47 529
[14]Li T et al 2007 Phys. Rev. Lett. 99 162503
[15]Patel D et al 2012 Phys. Lett. B 718 447
[16]Patel D et al 2013 Phys. Lett. B 726 178
[17]Li J et al 2008 Phys. Rev. C 78 064304
[18]Piekarewicz J 2007 Phys. Rev. C 76 031301(R)
[19]Niksič T et al 2008 Phys. Rev. C 78 034318
[20]Khan E et al 2013 Phys. Rev. C 87 064311
[21]Cao L G et al 2012 Phys. Rev. C 86 054313
[22]Danysz M and Pniewski J 1953 Philos. Mag. 44 348
[23]Pile P H et al 1991 Phys. Rev. Lett. 66 2585
[24]Tamura H et al 2000 Phys. Rev. Lett. 84 5963
[25]Miyoshi T et al 2003 Phys. Rev. Lett. 90 232502
[26]Rayet M 1976 Ann. Phys. 102 226
[27]Lanskoy D E 1998 Phys. Rev. C 58 3351
[28]Tretyakova T Y et al 1999 Eur. Phys. J. A 5 391
[29]Schulze H J et al 1995 Phys. Lett. B 355 21
[30]Tan Y H et al 2004 Phys. Rev. C 70 054306
[31]Ma Z Y et al 1996 Nucl. Phys. A 608 305
[32]Yamamoto Y et al 1988 Prog. Theor. Phys. 80 757
[33]Sun T T et al 2017 Phys. Rev. C 96 044312
[34]Motoba T et al 1983 Prog. Theor. Phys. 70 189
[35]Motoba T et al 1985 Prog. Theor. Phys. Suppl. 81 42
[36]Hiyama E et al 1999 Phys. Rev. C 59 2351
[37]Tanida K et al 2001 Phys. Rev. Lett. 86 1982
[38]Win M T and Hagino K 2008 Phys. Rev. C 78 054311
[39]Lu B N et al 2011 Phys. Rev. C 84 014328
[40]Zhou X R et al 2007 Phys. Rev. C 76 034312
[41]Li A et al 2013 Phys. Rev. C 87 014333
[42]Minato F et al 2009 Nucl. Phys. A 831 150
[43]Vretenar D et al 1998 Phys. Rev. C 57 R1060
[44]Lu H F and Meng J 2002 Chin. Phys. Lett. 19 1775
[45]Yao J M et al 2011 Nucl. Phys. A 868-869 12
[46]Shiamura S 1989 Nuovo Cimento A 102 491
[47]Minato F et al 2012 Phys. Rev. C 85 024316
[48]Minato F et al 2013 Phys. Rev. C 88 064303
[49]Vida na I 2018 arXiv:1803.00504
[50]Vautherin D and Brink D M 1972 Phys. Rev. C 5 626
[51]Chabanat E et al 1998 Nucl. Phys. A 635 231
[52]Bender M et al 2003 Rev. Mod. Phys. 75 121
[53]Colò G et al 2013 Comput. Phys. Commun. 184 142
[54]Lv H et al in preparation
[55]Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer-Verlag)
[56]Giai N V et al 1981 Phys. Lett. B 106 379
[57]Lanskoy D E et al 1997 Phys. Rev. C 55 2330
[58]Lanskoy D E et al 1992 Z. Phys. A 343 355
[59]Schulze H J and Hiyama E 2014 Phys. Rev. C 90 047301
Related articles from Frontiers Journals
[1] Jiawei Chen, Junchen Pei, Yu Qiang, and Jihuai Chi. Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process[J]. Chin. Phys. Lett., 2023, 40(1): 062102
[2] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 062102
[3] Chen Liu , Shouyu Wang, Bin Qi , and Hui Jia . Possible Candidates for Chirality in the Odd-Odd As Isotopes[J]. Chin. Phys. Lett., 2020, 37(11): 062102
[4] Yan-Zhao Wang, Yang Li, Chong Qi, Jian-Zhong Gu. Pairing Effects on Bubble Nuclei[J]. Chin. Phys. Lett., 2019, 36(3): 062102
[5] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Li-Gang Cao. Pygmy and Giant Dipole Resonances in Proton-Rich Nuclei $^{17,18}$Ne[J]. Chin. Phys. Lett., 2017, 34(8): 062102
[6] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 062102
[7] Jing Peng, Wen-Qiang Xu. Tilted Axis Rotation of $^{57}$Mn in Covariant Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(01): 062102
[8] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 062102
[9] WANG Yan-Zhao, GU Jian-Zhong, YU Guo-Liang, HOU Zhao-Yu. Tensor Force Effect on Shape Coexistence of N=28 Neutron-Rich Isotones[J]. Chin. Phys. Lett., 2014, 31(10): 062102
[10] S. Unlu. Quasi Random Phase Approximation Predictions on Two-Neutrino Double Beta Decay Half-Lives to the First 2+ State[J]. Chin. Phys. Lett., 2014, 31(04): 062102
[11] WEN Pei-Wei, CAO Li-Gang . Spin-Flip Response Function of Finite Nuclei in a Fully Self-Consistent RPA Approach[J]. Chin. Phys. Lett., 2013, 30(5): 062102
[12] YANG Ding, CAO Li-Gang, MA Zhong-Yu. The Nuclear Incompressibility and Isoscalar Giant Dipole Resonance in Relativistic Continuum Random Phase Approximation[J]. Chin. Phys. Lett., 2013, 30(5): 062102
[13] TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao. Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional[J]. Chin. Phys. Lett., 2013, 30(1): 062102
[14] YANG Ding, CAO Li-Gang, MA Zhong-Yu. Fully Self-Consistency in Relativistic Random Phase Approximation[J]. Chin. Phys. Lett., 2012, 29(11): 062102
[15] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 062102
Viewed
Full text


Abstract