Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 038501    DOI: 10.1088/0256-307X/35/3/038501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate
Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou**
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022
Cite this article:   
Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang et al  2018 Chin. Phys. Lett. 35 038501
Download: PDF(766KB)   PDF(mobile)(764KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new silicon-on-insulator (SOI) trench lateral double-diffused metal oxide semiconductor (LDMOS) with a reduced specific on-resistance $R_{\rm on,sp}$ is presented. The structure features a non-depleted embedded p-type island (EP) and dual vertical trench gate (DG) (EP-DG SOI). First, the optimized doping concentration of drift region is increased due to the assisted depletion effect of EP. Secondly, the dual conduction channel is provided by the DG when the EP-DG SOI is in the on-state. The increased optimized doping concentration of the drift region and the dual conduction channel result in a dramatic reduction in $R_{\rm on,sp}$. The mechanism of the EP is analyzed, and the characteristics of $R_{\rm on,sp}$ and breakdown voltage (BV) are discussed. Compared with conventional trench gate SOI LDMOS, the EP-DG SOI decreases $R_{\rm on,sp}$ by 47.1% and increases BV from 196 V to 212 V at the same cell pitch by simulation.
Received: 12 September 2017      Published: 25 February 2018
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.30.Tv (Field effect devices)  
Fund: Supported by the Youth Science Foundation of Changchun University of Science and Technology under Grant No XQNJJ-2015-10, and the Innovation Science Foundation of Changchun University of Science and Technology under Grant No XJJLG-2016-07.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/038501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/038501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Fan
Sheng-Ming Sun
Hai-Zhu Wang
Yong-Gang Zou
[1]Nakagawa A, Kawaguchi Y and Nakamura K 2007 Proc. IWPSD (Mumbai, India 16–20 December 2007) p 762
[2]Tomita H, Eguchi H, Kijima S et al 2011 Proc. ISPSD (San Diego, USA 23–26 May 2011) p 28
[3]Hara K, Kakegawa T, Wada S et al 2017 Proc. ISPSD (Sapporo, Japan 28 May–1 June 2017) p 307
[4]Williams R K, Darwish M N, Blanchard R A et al 2017 IEEE Trans. Electron Devices 64 674
[5]Williams R K, Darwish M N, Blanchard R A et al 2017 IEEE Trans. Electron Devices 64 692
[6]Adhikari M S and Singh Y 2016 Proc. ICCTICT (New Delhi, India 11–13 March 2016) p 128
[7]Hu S D, Jin J J, Chen Y H et al 2015 Chin. Phys. Lett. 32 098502
[8]Cheng S, Fang D, Qiao M et al 2017 Proc. ISPSD (Sapporo, Japan 28 May–1 June 2017) p 323
[9]Wang Y, Yu C, Li M et al 2017 IEEE Trans. Electron Devices 64 1455
[10]Wei J, Wang Y, Zhang M et al 2017 Proc. ISPSD (Sapporo, Japan 28 May–1 June 2017) p 331
[11]Hu X, Zhang B, Luo X et al 2012 Chin. Phys. B 21 078502
[12]Wang Y, Liu Y J, Wang Y F et al 2017 IEEE Trans. Electron Devices 64 3028
[13]Ludikhuize A W, van der Pol J A, Heringa A et al 2002 Proc. ISPSD (Sante Fe, USA 7–7 June 2002) p 77
[14]Son W S, Sohn Y H and Choi S Y 2004 Solid-State Electron. 48 1629
[15]Cortés I, Fernández-Martínez P, Flores D et al 2007 Semicond. Sci. Technol. 22 1183
[16]Luo X, Fan J, Wang Y et al 2011 IEEE Electron Device Lett. 32 185
[17]Zhang W, Qiao M, Wu L et al 2013 Proc. ISPSD (Kanazawa, Japan 26–30 May 2013) p 329
[18]Fan J, Zhang B, Luo X et al 2013 Chin. Phys. B 22 118502
[19]Zhou K, Luo X, Xu Q et al 2014 IEEE Trans. Electron Devices 61 2466
[20]Li P, Luo X, Luo Y et al 2015 Chin. Phys. B 24 047304
[21]Wang Z, Li P, Zhang B et al 2015 Chin. Phys. Lett. 32 068501
[22]Wu L, Zhang Z, Song Y et al 2017 Chin. Phys. B 26 027101
[23]Wu L, Zhang W, Shi Q et al 2014 Electron. Lett. 50 1982
[24]Zhang W, Zhang B, Qiao M et al 2014 IEEE Trans. Electron Devices 61 518
[25]Mehrad M, Zareiee M and Orouji A A 2017 IEEE Trans. Electron Devices 64 4213
[26]Fan J, Wang Z, Zhang B et al 2013 Chin. Phys. B 22 048501
[27]TMA MEDICI 4. 2. (Palo Alto CA: Technology Modeling Associates Inc.)
[28]Ye H and Haldar P 2008 IEEE Trans. Electron Devices 55 2246
[29]Fujihira T and Miyasaka Y 1998 Proc. ISPSD (Kyoto, Japan 3–6 June 1998) p 423
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 038501
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 038501
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 038501
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 038501
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 038501
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 038501
[7] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 038501
[8] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 038501
[9] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 038501
[10] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 038501
[11] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 038501
[12] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 038501
[13] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 038501
[14] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 038501
[15] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 038501
Viewed
Full text


Abstract