Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 037301    DOI: 10.1088/0256-307X/35/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Silicon Cluster Based Single Electron Transistor with Potential Room-Temperature Switching
Zhanbin Bai1, Xiangkai Liu2, Zhen Lian3, Kangkang Zhang1, Guanghou Wang1, Su-Fei Shi3, Xiaodong Pi2, Fengqi Song1**
1National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
2State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
3Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, NY 12180, USA
Cite this article:   
Zhanbin Bai, Xiangkai Liu, Zhen Lian et al  2018 Chin. Phys. Lett. 35 037301
Download: PDF(1940KB)   PDF(mobile)(1929KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is determined to be a Si$_{170}$ cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300 meV, which is a result of the large capacitance of a small silicon quantum dot ($\sim$1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10 meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the $g$ factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.
Received: 09 February 2018      Published: 25 February 2018
PACS:  73.63.Kv (Quantum dots)  
  85.35.Gv (Single electron devices)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303200, the National Natural Science Foundation of China under Grant Nos U1732273, U1732159, 91421109, 91622115, 11522432, 11574217 and 61774133, the Natural Science Foundation of Jiangsu Province under Grant No BK20160659.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/037301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhanbin Bai
Xiangkai Liu
Zhen Lian
Kangkang Zhang
Guanghou Wang
Su-Fei Shi
Xiaodong Pi
Fengqi Song
[1]Kouwenhoven L P, Oosterkamp T H, Danoesastro M W S, Eto M, Austing D G, Honda T and Tarucha S 1997 Science 278 1788
[2]Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[3]Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L and Ralph D C 2002 Nature 417 722
[4]Liang W, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
[5]Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[6]Kuemmeth F, Bolotin K I, Shi S F and Ralph D C 2008 Nano Lett. 8 4506
[7]Bolotin K I, Kuemmeth F, Pasupathy A N and Ralph D C 2004 Appl. Phys. Lett. 84 3154
[8]Petta J R and Ralph D C 2001 Phys. Rev. Lett. 87 266801
[9]Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Mottonen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D, Jamieson D N, Escott C C, Hollenberg L C, Clark R G and Dzurak A S 2010 Nature 467 687
[10]Simmons C B, Thalakulam M, Shaji N, Klein L J, Qin H, Blick R H, Savage D E, Lagally M G, Coppersmith S N and Eriksson M A 2007 Appl. Phys. Lett. 91 213103
[11]Lim W H, Zwanenburg F A, Huebl H, Möttönen M, Chan K W, Morello A and Dzurak A S 2009 Appl. Phys. Lett. 95 242102
[12]Liu X, Zhang Y, Yu T, Qiao X, Gresback R, Pi X and Yang D 2016 Part. Part. Syst. Charact. 33 44
[13]Liu X, Zhao S, Gu W, Zhang Y, Qiao X, Ni Z, Pi X and Yang D 2018 ACS Appl. Mater. Interfaces 10 5959
[14]Gu W, Liu X, Pi X, Dai X, Zhao S, Yao L, Li D, Jin Y, Xu M, Yang D and Qin G 2017 IEEE Photon. J. 9 1
[15]Yu T, Wang F, Xu Y, Ma L, Pi X and Yang D 2016 Adv. Mater. 28 4912
[16]Zaknoon B, Bahir G, Saguy C, Edrei R, Hoffman A, Rao R A, Muralidhar R and Chang K M 2008 Nano Lett. 8 1689
[17]Sawada T, Kodera T and Oda S 2016 Appl. Phys. Lett. 109 213102
[18]Park H, Lim A K L, Alivisatos A P, Park J and McEuen P L 1999 Appl. Phys. Lett. 75 301
[19]Shi S F, Xu X, Ralph D C and McEuen P L 2011 Nano Lett. 11 1814
[20]Heersche H B, de Groot Z, Folk J A, van der Zant H S, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett. 96 206801
[21]Young N P, Li Z Y, Chen Y, Palomba S, Di Vece M and Palmer R E 2008 Phys. Rev. Lett. 101 246103
[22]Strachan D R, Smith D E, Johnston D E, Park T H, Therien M J, Bonnell D A and Johnson A T 2005 Appl. Phys. Lett. 86 043109
[23]Houck A A, Labaziewicz J, Chan E K, Folk J A and Chuang I L 2005 Nano Lett. 5 1685
[24]Xu B and Tao N J 2003 Science 301 1221
[25]O'Neill K, Osorio E A and van der Zant H S J 2007 Appl. Phys. Lett. 90 133109
[26]Jo M H, Grose J E, Baheti K, Deshmukh M M, Sokol J J, Rumberger E M, Hendrickson D N, Long J R, Park H and Ralph D C 2006 Nano Lett. 6 2014
[27]Garrigues A R, Wang L, del Barco E and Nijhuis C A 2016 Nat. Commun. 7 11595
[28]Frisenda R and van der Zant H S J 2016 Phys. Rev. Lett. 117 126804
[29]Xiang D, Wang X, Jia C, Lee T and Guo X 2016 Chem. Rev. 116 4318
[30]Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
[31]Parks J J, Champagne A R, Hutchison G R, Flores-Torres S, Abruna H D and Ralph D C 2007 Phys. Rev. Lett. 99 026601
[32]Isl, J O, Gaudenzi R, de Bruijckere J, Burzuri E, Franco C, Mas-Torrent M, Rovira C, Veciana J, Klapwijk T M, Aguado R and van der Zant H S 2017 Phys. Rev. Lett. 118 117001
[33]Weis J, Haug R J, Klitzing K v and Ploog K 1993 Phys. Rev. Lett. 71 4019
[34]Grose J E, Tam E S, Timm C, Scheloske M, Ulgut B, Parks J J, Abruna H D, Harneit W and Ralph D C 2008 Nat. Mater. 7 884
[35]Li J, Li X, Zhai H J and Wang L S 2003 Science 299 864
[36]Bartels C, Hock C, Huwer J, Kuhnen R, Schwöbel J and von Issendorff B 2009 Science 323 1323
[37]Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D and Wang L S 2014 Nat. Chem. 6 727
[38]Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J and Wang L S 2014 Nat. Commun. 5 3113
Related articles from Frontiers Journals
[1] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 037301
[2] Xiao Guo, Wen-jie Liang. The Unconventional Influence of a Nearby Molecule onto Transport of Single C$_{60}$ Molecule Transistor[J]. Chin. Phys. Lett., 2019, 36(12): 037301
[3] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 037301
[4] SU Li-Na, LV Li, LI Xin-Xing, QIN Hua, GU Xiao-Feng. Fabrication and Characterization of a Single Electron Transistor Based on a Silicon-on-Insulator[J]. Chin. Phys. Lett., 2015, 32(4): 037301
[5] LI Zeng-Peng, WU Shao-Quan, ZHAO Guo-Ping. Effects of the Antiferromagnetic Spin Coupling and Interdot Coulomb Repulsion on Kondo Effects in Serial Double Quantum Dots[J]. Chin. Phys. Lett., 2014, 31(04): 037301
[6] WANG Hao, WU Guo-Xing. The Performance Characteristics of a Nano-thermoelectric Refrigerator Driven by an External Stochastic Force[J]. Chin. Phys. Lett., 2013, 30(5): 037301
[7] PENG Juan**,LI Shu-Shen. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(4): 037301
[8] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 037301
[9] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 037301
[10] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 037301
[11] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 037301
[12] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 037301
[13] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 037301
[14] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 037301
[15] XU Zhang-Cheng, ZHANG Ya-Ting, Jø, rn M. Hvam, Yoshiji Horikoshi. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers[J]. Chin. Phys. Lett., 2009, 26(5): 037301
Viewed
Full text


Abstract