Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 118501    DOI: 10.1088/0256-307X/35/11/118501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell
Yan-Nan Xu1,2, Jin-Shun Bi1**, Gao-Bo Xu1, Bo Li1, Kai Xi1, Ming Liu1, Hai-Bin Wang3, Li Luo4
1Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2University of Chinese Academy of Sciences, Beijing 100049
3School of Internet of Things Engineering, HoHai University, Changzhou 213022
4Beijing Jiaotong University, Beijing 100044
Cite this article:   
Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu et al  2018 Chin. Phys. Lett. 35 118501
Download: PDF(656KB)   PDF(mobile)(655KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Because of the discrete charge storage mechanism, charge trapping memory (CTM) technique is a good candidate for aerospace and military missions. The total ionization dose (TID) effects on CTM cells with Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$ (AHA) high-$k$ gate stack structure under in-situ 10 keV x-rays are studied. The $C$–$V$ characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation, thereby inducing the shift of flatband voltage ($V_{\rm fb}$). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.
Received: 19 July 2018      Published: 23 October 2018
PACS:  85.30.-z (Semiconductor devices)  
  07.89.+b (Environmental effects on instruments (e.g., radiation and pollution effects))  
  61.80.-x (Physical radiation effects, radiation damage)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 616340084, the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101, the International Cooperation Project of Chinese Academy of Sciences, and the Austrian-Chinese Cooperative R&D Projects under Grant No 172511KYSB20150006.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/118501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/118501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Nan Xu
Jin-Shun Bi
Gao-Bo Xu
Bo Li
Kai Xi
Ming Liu
Hai-Bin Wang
Li Luo
[1]Guterman D C, Rimawi I H, Chiu T L, Halvorson R D and McElroy D J 1979 IEEE J. Solid-State Circuits 14 498
[2]Kim K and Choi J 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop (USA, Monterey 12–16 Feb 2006) p 9
[3]Prall K 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop (USA, Monterey 26—30 Aug 2007) p 5
[4]Lu C Y, Hsieh K Y and Liu R 2009 Microelectron. Eng. 86 283
[5]Houdt J V 2011 Curr. Appl. Phys. 11 21
[6]Molas G, Bocquet M, Vianello E, Perniola L, Grampeix H, Colonna J P and Bongiorno C 2009 Microelectron. Eng. 86 1796
[7]White M H, Adams D A and Bu J 2000 IEEE Circuits Devices Mag. 16 22
[8]Li D M, Wang Z H, Huangfu L Y and Gou Q J 2007 Chin. Phys. B 16 3760
[9]Qiao F Y, Pan L Y, Yu X, Ma Z H, Wu D and Xu J 2014 Sci. Chin. Inf. Sci. 57 1
[10]Tausch J, Tyson S and Fairbanks T 2007 IEEE Radiat. Eff. Data Workshop (USA Honolulu 23–27 July 2007) p 189
[11]Bassi S and Pattanaik M 2014 18th International Symposium on VLSI Design and Test (India, Coimbatore 16–18 July 2014) p 1
[12]Yao Y, Li C, Huo Z L, Liu M, Zhu C X, Gu C Z, Duan X F, Wang Y G, Gu L and Yu R C 2013 Nat. Commun. 4 2764
[13]Xu Y N, Bi J S, Xu G B, Xi K, Li Bo and Liu M 2017 Sci. Chin. Inf. Sci. 60 120401
[14]Yilmaz E and Kaya S 2016 IEEE Trans. Nucl. Sci. 63 1301
[15]Zhang E X, Fleetwood D M, Hachtel J A, Liang C, Reed R A, Alles M L and Pantelides S T 2016 IEEE Trans. Nucl. Sci. 99 1
[16]Jiang R, Zhang E X, Zhao S E, Fleetwood D M, Schrimpf R D, Reed R A and Doolittle W A 2017 IEEE Trans. Nucl. Sci. 99 1
[17]Choi W H, Park S S, Choi K I, Nam D H, Kwon H M, Han I S and Lee H D 2009 Jpn. J. Appl. Phys. 48 04C068
[18]Felix J A, Schwank J R, Fleetwood D M, Shaneyfelt M R and Gusev E P 2004 Microelectron. Reliab. 44 563
[19]Ergin F B, Turan R, Shishiyanu S T and Yilmaz E 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1482
[20]Lan X X, Ou X, Lei Y, Gong C J, Yin Q N, Xu B, Xia Y D, Yin J and Liu Z G 2013 Appl. Phys. Lett. 103 192905
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 118501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 118501
[3] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 118501
[4] Mei Li, Jin-Shun Bi, Yan-Nan Xu, Bo Li, Kai Xi, Hai-Bin Wang, Jing-Liu, Jin-Li, Lan-Long Ji, Li Luo, Ming Liu. Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes[J]. Chin. Phys. Lett., 2018, 35(7): 118501
[5] Yan-Fei Liu, Dong-Dong Yang, Li-Xin Wang, Qi Li. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space[J]. Chin. Phys. Lett., 2018, 35(4): 118501
[6] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 118501
[7] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 118501
[8] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 118501
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 118501
[10] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 118501
[11] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 118501
[12] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 118501
[13] HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui, JIANG Yu-Yu, CHENG Kun, ZHOU Jian-Lin, LIU Jiang-Tao, HUANG Rui, YAO Sheng-Jie. A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance[J]. Chin. Phys. Lett., 2015, 32(09): 118501
[14] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 118501
[15] ZHANG Chun-Wei, LIU Si-Yang, SUN Wei-Feng, ZHOU Lei-Lei, ZHANG Yi, SU Wei, ZHANG Ai-Jun, LIU Yu-Wei, HU Jiu-Li, HE Xiao-Wei. Anomalous Channel Length Dependence of Hot-Carrier-Induced Saturation Drain Current Degradation in n-Type MOSFETs[J]. Chin. Phys. Lett., 2015, 32(08): 118501
Viewed
Full text


Abstract