Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 110302    DOI: 10.1088/0256-307X/35/11/110302
GENERAL |
Exact Entanglement Dynamics in Three Interacting Qubits
Wen-Bin He1,2, Xi-Wen Guan1,3,4**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2University of Chinese Academy of Sciences, Beijing 100049
3Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
4Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
Cite this article:   
Wen-Bin He, Xi-Wen Guan 2018 Chin. Phys. Lett. 35 110302
Download: PDF(631KB)   PDF(mobile)(634KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motivated by recent experimental studies on coherent dynamics transfer in three interacting atoms or electron spins [Phys. Rev. Lett 114 (2015) 113002, Phys. Rev. Lett 120 (2018) 243604], here we study entanglement entropy transfer in three interacting qubits. We analytically calculate time evolutions of wave function, density matrix and entanglement of the system. We find that initially entangled two qubits may alternatively transfer their entanglement entropy to other two qubit pairs. Thus dynamical evolution of three interacting qubits may produce a genuine three-partite entangled state through entanglement entropy transfers. In particular, different pairwise interactions of the three qubits endow symmetric and asymmetric evolutions of the entanglement transfer, characterized by the quantum mutual information and concurrence. Finally, we discuss an experimental proposal of three Rydberg atoms for testing the entanglement dynamics transfer of this kind.
Received: 16 August 2018      Published: 23 October 2018
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  02.30.Ik (Integrable systems)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11534014, and the National Key R&D Program of China under Grant No 2017YFA0304500.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/110302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Bin He
Xi-Wen Guan
[1]Polkovnikov A et al 2011 Rev. Mod. Phys. 83 863
[2]Amico L et al 2008 Rev. Mod. Phys. 80 517
[3]Giovannetti V et al 2006 Phys. Rev. Lett. 96 010401
[4]Li X K et al 2015 Phys. Rev. Lett. 114 255301
[5]Barredo D et al 2015 Phys. Rev. Lett. 114 113002
[6]Zeng Y et al 2017 Phys. Rev. Lett. 119 160502
[7]DiCarlo L et al 2010 Nature 467 574
[8]Wang B C et al 2017 Phys. Rev. Appl. 8 064035
[9]Rosenfeld E L et al 2018 Phys. Rev. Lett. 120 243604
[10]Nielsen M A and Chuang I L 2000 Quantum Computation, Quantum Information (Cambridge: Cambridge University Press)
[11]Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[12]Wootters W K 1998 Phys. Rev. Lett. 80 2245
[13]Coffman V et al 2000 Phys. Rev. A 61 052306
[14]Dukelsky J et al 2004 Rev. Mod. Phys. 76 643
[15]Zhou H Q et al 2002 Phys. Rev. B 65 060502(R)
[16]Khaetskii A V et al 2002 Phys. Rev. Lett. 88 186802
[17]Khaetskii A V et al 2003 Phys. Rev. B 67 195329
[18]Bortz M and Stolze J 2007 Phys. Rev. B 76 014304
[19]Araby O E et al 2012 Phys. Rev. B 85 115130
[20]Wang X G 2001 Phys. Rev. A 64 012313
[21]Liu W S and Andrei N 2014 Phys. Rev. Lett. 112 257204
[22]Saffman M et al 2010 Rev. Mod. Phys. 82 2313
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 110302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 110302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 110302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 110302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 110302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 110302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 110302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 110302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 110302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 110302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 110302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 110302
[14] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 110302
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 110302
Viewed
Full text


Abstract