Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 014201    DOI: 10.1088/0256-307X/35/1/014201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency
Yin-Xing Ding1,2, Lu-Lu Wang1,2, Li Yu1,2**
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
Yin-Xing Ding, Lu-Lu Wang, Li Yu 2018 Chin. Phys. Lett. 35 014201
Download: PDF(1145KB)   PDF(mobile)(1133KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Babinet-inverted optical nanoantenna analogue of electromagnetically induced transparency based on the coupling between two magnetic dipole antennas and a magnetic octupole antenna in a Au film waveguide is demonstrated. Simulation results indicate that a pronounced elimination occurs in the radiating spectrum due to the coupling-induced radiation suppression. A two-oscillator electromagnetically induced transparency model is used to describe the antenna. The coupling coefficient between the magnetic dipole antennas and the magnetic octupole antenna is calculated using the model and is found to decline exponentially with the increase of the distance between them. Such an antenna can be directly integrated with optical waveguides or transmission lines, thus is of fundamental significance for the applications in nano-optics, such as the optical device miniaturizations and photonic circuit integrations.
Received: 01 September 2017      Published: 17 December 2017
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.82.-m (Integrated optics)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041, 11574035 and 11404030, and the State Key Laboratory of Information Photonics and Optical Communications.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/014201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/014201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yin-Xing Ding
Lu-Lu Wang
Li Yu
[1]Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[2]Boller J K, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[3]Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[4]Lal S, Link S and Halas N J 2007 Nat. Photon. 1 641
[5]Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[6]Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
[7]Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[8]Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2009 Nano Lett. 9 1663
[9]Zhu Y, Hu X, Fu Y, Yang H and Gong Q 2013 Sci. Rep. 3 2338
[10]Dong C, Li B, Li H X, Liu H, Chen M Q, Li D D, Yan C C and Zhang D H 2016 Chin. Phys. Lett. 33 074201
[11]Habteyes T G, Dhuey S, Cabrini S, Schuck P J and Leone S R 2011 Nano Lett. 11 1819
[12]Kosako T, Kadoya Y and Hofmann H F 2010 Nat. Photon. 4 312
[13]Novotny L and Hulst N V 2011 Nat. Photon. 5 83
[14]Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
[15]Olmon R L and Raschke M B 2012 Nanotechnology 23 444001
[16]Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W and Kuipers L 2010 Rev. Mod. Phys. 82 729
[17]Dorfmuller J, Dregely D, Esslinger M, Khunsin W, Vogelgesang R, Kern K and Giessen H 2011 Nano Lett. 11 2819
[18]Dregely D, Taubert R, Dorfmuller J, Vogelgesang R, Kern K and Giessen H 2011 Nat. Commun. 2 267
[19]Taminiau T H, Moerland R J, Segerink F B, Kuipers L and van Hulst N F 2007 Nano Lett. 7 28
[20]Kinkhabwala A A, Yu Z, Fan S, Avlasevich Y, Mullen K and Moerner W E 2009 Nat. Photon. 3 654
[21]Farahani J N, Pohl D W, Eisler J H and Hecht B 2005 Phys. Rev. Lett. 95 017402
[22]Kühn S, Håkanson U, Rogobete L and Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
[23]Muskens O L, Giannini V, Sánchez-Gil J A and Rivas J G 2007 Nano Lett. 7 2871
[24]Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
[25]Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[26]Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A and Feldmann J 2008 Phys. Rev. Lett. 100 203002
[27]Yang J, Xiao X, Hu C, Zhang W, Zhou S and Zhang J 2014 Nano Lett. 14 704
[28]Zhang J, Zhang W, Zhu X, Yang J, Xu J and Yu D 2012 Appl. Phys. Lett. 100 241115
[29]Kim J, Roh Y G, Cheon S, Choe J H, Lee J, Lee J, Jeong H, Kim U J, Park Y, Song I Y, Park Q H, Hwang S W, Kim K and Lee C W 2014 Nano Lett. 14 3072
[30]Kim J, Roh Y G, Cheon S, Kim U J, Hwang S W, Park Y and Lee C W 2015 Sci. Rep. 5 11832
[31]Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[32]Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W and Ward C A 1983 Appl. Opt. 22 1099
[33]Li Q, Wang T, Su Y, Yan M and Qiu M 2010 Opt. Express 18 8367
[34]Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S and Lipson M 2006 Phys. Rev. Lett. 96 123901
[35]Xiao Y F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804
[36]Xiao Y F, Gaddam V and Yang L 2008 Opt. Express 16 12538
[37]Li J, Yu R, Ding C and Wu Y 2016 Phys. Rev. A 93 023814
Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 014201
[2] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 014201
[3] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 014201
[4] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 014201
[5] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 014201
[6] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 014201
[7] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 014201
[8] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 014201
[9] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 014201
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 014201
[11] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 014201
[12] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 014201
[13] WANG Chun-Fang, WANG Feng, YANG Li-Ru. Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium[J]. Chin. Phys. Lett., 2015, 32(09): 014201
[14] YANG Li-Ru, WANG Chun-Fang, ZHANG Da-Wei. Transverse Optical Properties of the Eu3+:Y2SiO5 Crystal in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(06): 014201
[15] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 014201
Viewed
Full text


Abstract