Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 013301    DOI: 10.1088/0256-307X/35/1/013301
ATOMIC AND MOLECULAR PHYSICS |
Width-Dependent Optical Properties for Zigzag-Edge Silicene Nanoribbons
Hai-Rui Bao1, Wen-Hu Liao1,2**, Xin-Cheng Zhang1, Min Zuo1
1College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000
2Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province, Jishou University, Jishou 416000
Cite this article:   
Hai-Rui Bao, Wen-Hu Liao, Xin-Cheng Zhang et al  2018 Chin. Phys. Lett. 35 013301
Download: PDF(542KB)   PDF(mobile)(527KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study theoretically the optical response for perfect zigzag-edge silicene nanoribbons with $N$ silicon atoms of the A and B sublattices ($N$-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. The 8- and 16-ZSiNRs are demonstrated to exhibit a broad energy regime of absorption coefficient, refractive index, extinction coefficient, and reflectivity from infrared to ultraviolet, utilizing the dipole-transition theorem for semiconductors. The optical spectra for 8- and 16-ZSiNRs may be classified into two types of the transitions, one between valence and conduction subbands with the same parity, and the other among the edge state and bulk state subbands. With the increase of the ribbon width, the optical spectra for ZSiNRs are proved to exhibit red shift and blue shift at the lower and higher energy regimes, respectively. The obtained novel features are believed to be of significance in designs of silicene-based optoelectronic devices.
Received: 25 September 2017      Published: 17 December 2017
PACS:  33.20.Ea (Infrared spectra)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11664010 and 11264013, the Hunan Provincial Natural Science Foundation of China under Grant Nos 2017JJ2217 and 12JJ4003, the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No 14B148, the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Innovation Project for Postgraduate of Hunan Province under Grant No CX2015B549, and the Research Program of Jishou University under Grant Nos 15JDY026 and Jdy16021.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/013301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/013301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai-Rui Bao
Wen-Hu Liao
Xin-Cheng Zhang
Min Zuo
[1]Guzmán-Verri G G and Lew Y V L C 2007 Phys. Rev. B 76 075131
[2]Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[3]Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2010 Appl. Phys. Lett. 96 082111
[4]Tran V and Yang L 2014 Phys. Rev. B 89 245407
[5]Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6]Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[7]Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[8]Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[9]De Padova P, Kubo O, Olivieri B, Quaresima C, Nakayama T, Aono M and Le Lay G 2012 Nano Lett. 12 5500
[10]Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[11]Liu C C, Jiang H and Yao Y G 2011 Phys. Rev. B 84 195430
[12]Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[13]Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[14]Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 81 195120
[15]Song Y L, Zhang Y, Zhang J M and Lu D B 2010 Appl. Surf. Sci. 256 6313
[16]Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[17]Ding Y and Wang Y L 2014 Appl. Phys. Lett. 104 083111
[18]Ezawa M 2012 Europhys. Lett. 98 67001
[19]Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[20]Ezawa M 2013 Eur. Phys. J. B 86 139
[21]Dyrdal A and Barnas J 2012 Phys. Status Solidi RRL 6 340
[22]Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Phys. Rev. Lett. 112 106802
[23]Tahir M and Schwingenschlogl U 2013 Sci. Rep. 3 1075
[24]Yokoyama T 2013 Phys. Rev. B 87 241409
[25]Wang Y and Lou Y Y 2013 J. Appl. Phys. 114 183712
[26]Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
[27]Liang Y Y, Wang V, Mizuseki H and Kawazoe Y 2012 J. Phys.: Condens. Matter 24 455302
[28]An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 213115
[29]Yokoyama T 2014 New J. Phys. 16 085005
[30]Zberecki K, Wierzbicki M, Barnaś J and Swirkowicz R 2013 Phys. Rev. B 88 115404
[31]Ezawa M 2012 Phys. Rev. B 86 161407
[32]Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
[33]Tabert C J and Nicol E J 2013 Phys. Rev. B 88 085434
[34]Arzate N, Váquez-Nava R A, Cabellos J L, Carriles R, Castro-Camus E, Figueroa-Delgadillo M E and Mendoza B S 2011 Opt. Lasers Eng. 49 668
[35]Matthes L, Gori P, Pulci O and Bechstedt F 2013 Phys. Rev. B 87 035438
[36]Bechstedt F, Matthes L, Gori P and Pulci O 2012 Appl. Phys. Lett. 100 261906
[37]Bao H R, Liao W H, Guo J J, Zhao H P and Zhou G H 2015 Laser Phys. Lett. 12 095902
[38]Bao H R, Liao W H, Guo J J, Yang X X, Zhao H P and Zhou G H 2015 J. Phys. D 48 455306
[39]Shyu F L 2017 Physica E 85 117
[40]Zou J F and Ji Y 2017 J. Phys.: Conf. Ser. 844 012018
[41]Liao W H, Zhou G H and Xi F 2008 J. Appl. Phys. 104 126105
[42]Chu R L, Li X, Wu S F, Niu Q, Yao W, Xu X D and Zhang C W 2014 Phys. Rev. B 90 045427
[43]Li L L, Moldovan D, Xu W and Peeters F M 2017 Nanotechnology 28 085702
[44]Wakabayashi K, Sasaki K L, Nakanishi T and Enoki T 2010 Sci. Technol. Adv. Mater. 11 054504
[45]Luck J M and Avishai Y 2015 J. Phys.: Condens. Matter 27 025301
[46]Hsu H and Reichl L E 2007 Phys. Rev. B 76 045418
[47]Zhou B L, Zhou B H, Chen X W, Liao W H and Zhou G H 2015 J. Phys.: Condens. Matter 27 465301
Related articles from Frontiers Journals
[1] Wei Luo, Chuan-Xi Duan. A Broadband Pulsed External-Cavity Quantum Cascade Laser Operating near 6.9μm[J]. Chin. Phys. Lett., 2016, 33(02): 013301
[2] LIU Xiao-Dong, **, Hagihala Masato, ZHENG Xu-Guang, **, MENG Dong-Dong, GUO Qi-Xin . Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl[J]. Chin. Phys. Lett., 2011, 28(8): 013301
[3] JIANG Xiu-Lan, LI Dong-Fei, SUN Cheng-Lin, LI Zhan-Long, YANG Guang, ZHOU Mi, LI Zuo-Wei, **, GAO Shu-Qin . Relationship between Fermi Resonance and Solvent Effects[J]. Chin. Phys. Lett., 2011, 28(5): 013301
[4] LIU Xiao-Dong, **, Hagihala Masato, ZHENG Xu-Guang, **, TAO Wan-Jun, MENG Dong-Dong, ZHANG Sen-Lin, GUO Qi-Xin . Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides[J]. Chin. Phys. Lett., 2011, 28(1): 013301
[5] Srinivasa Rao Karumuri. Vibrational Spectra of Distorted Structure Molecules by Using Lie Algebraic Techniques: an Application to Copper and Magnesium Octaethyl Porphyrin[J]. Chin. Phys. Lett., 2010, 27(10): 013301
[6] QI Chun-Chao, ZUO Du-Luo, LU Yan-Zhao, TANG Jian, YANG Chen-Guang, KE Lin-Da, CHENG Zu-Hai,. An Efficient Photon Conversion Efficiency Ammonia Terahertz Cavity Laser[J]. Chin. Phys. Lett., 2009, 26(12): 013301
[7] Srinivasa Rao KARUMURI, Joydeep CHOUDHURY, Nirmal Kumar SARKAR, Ramendu BHATTACHARJEE. Vibrational Spectroscopy of Stretching and Bending Modes of Nickel Tetraphenyl Porphyrin: an Algebraic Approach[J]. Chin. Phys. Lett., 2009, 26(9): 013301
[8] DENG Lun-Hua, GAO Xiao-Ming, CAO Zhen-Song, ZHAO Wei-Xiong, ZHANG Wei-Jun. High Resolution and High Sensitivity Measurement of Methane at 1.51μm[J]. Chin. Phys. Lett., 2006, 23(9): 013301
[9] ZHAO Dong-Hui, XIA Fang, NIE Jia-Xiang, CHEN Guo-Rong, ZHANG Xiang-Hua, MA Hong-Li, ADAM Jean-Luc. Gadolinium-Induced Multi-Effect on Properties of IR Transmitting Chalcogenide Glasses[J]. Chin. Phys. Lett., 2004, 21(3): 013301
[10] LI Guo-Qiang, JIE Wan-Qi, GU Zhi, HUA Hui. Correlation Between the IR Transmission Spectra and the CdZnTe Qualities[J]. Chin. Phys. Lett., 2003, 20(9): 013301
[11] SONG Hong-Wei, Herbert L. Strauss. Infrared Spectral Hole-Burning and Spectral Diffusion of Vibrational N-D Bands in a Disordered Tutton Salt [J]. Chin. Phys. Lett., 2002, 19(1): 013301
[12] LIN Hai, YUAN Lan-Feng, WANG Dong, ZHU Qing-Shi. Nonlinearity of the Dipole Moment Surface and Intensities Anomaly of CHCl3[J]. Chin. Phys. Lett., 2000, 17(1): 013301
[13] WU Ke-chen, LI Jun,. Infrared Absorption Cut-Off of Molecular Nonlinear Optical Crystals: Theoretical Studies on Vibrational Spectra of MDNB, Urea and MNA Molecules[J]. Chin. Phys. Lett., 1999, 16(12): 013301
[14] CHENG Ji-xin, WANG Xiao-gang, LIN Hai, ZHU Qing-shi. Symmetry Reduction and Rotational Re-quantization of Symmetric Top Molecules at Local Mode Limit[J]. Chin. Phys. Lett., 1997, 14(9): 013301
[15] LI Shijie, XU Xiaoping, LI Wenzhu, QIU Peihua, WANG Wenyao. Surface-Enhanced Third-Order Nonlinear Optical Response of C60 Films on Roughed Glass Plate [J]. Chin. Phys. Lett., 1993, 10(10): 013301
Viewed
Full text


Abstract