Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 097301    DOI: 10.1088/0256-307X/34/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements
Zhi-Fu Zhu1,2,3, He-Qiu Zhang4**, Hong-Wei Liang4, Xin-Cun Peng2, Ji-Jun Zou2**, Bin Tang2, Guo-Tong Du1,4,5
1School of Physics, Dalian University of Technology, Dalian 116024
2Engineering Research Center of Nuclear Technology Application (Ministry of Education), East China Institute of Technology, Nanchang 330013
3Jiangxi Province Engineering Research Center of New Energy Technology and Equipment (Ministry of Education), East China Institute of Technology, Nanchang 330013
4School of Microelectronics, Dalian University of Technology, Dalian 116024
5State Key Laboratory on Integrated Optoelectronics, School of Electronic Science and Engineering, Jilin University, Changchun 130012
Cite this article:   
Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang et al  2017 Chin. Phys. Lett. 34 097301
Download: PDF(703KB)   PDF(mobile)(698KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For the frequency range of 1 kHz–10 MHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage ($C$–$V$) and conductance-frequency-voltage ($G$–$f$–$V$) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance ($R_{\rm s}$) on high-frequency (5 MHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the $C_{\rm HF}$–$C_{\rm LF}$ capacitance and the conductance method are $2\times10^{12}$ eV$^{-1}$cm$^{-2}$ and $0.94\times10^{12}$ eV$^{-1}$cm$^{-2}$, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN.
Received: 24 April 2017      Published: 15 August 2017
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.40.-c (Electronic transport in interface structures)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/097301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Fu Zhu
He-Qiu Zhang
Hong-Wei Liang
Xin-Cun Peng
Ji-Jun Zou
Bin Tang
Guo-Tong Du
[1]Hirayama H et al 2007 Appl. Phys. Lett. 91 071901
[2]Asif Khan M et al 1994 Appl. Phys. Lett. 65 1121
[3]Nakamura S et al 1994 Appl. Phys. Lett. 64 1687
[4]Khan M A et al 1992 Appl. Phys. Lett. 60 2917
[5]Shur M S 1998 Solid-State Electron. 42 2131
[6]Sharma B L 1984 Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Springer)
[7]Lin Y J 2005 Appl. Phys. Lett. 86 122109
[8]Nagaraju G et al 2015 Appl. Phys. A 121 131
[9]Park Y et al 2012 Jpn. J. Appl. Phys. 51 09MK01
[10]Rickert K A, Ellis A B, Kim J K et al 2002 J. Appl. Phys. 92 6671
[11]Siva Pratap Reddy M, Bengi A, Rajagopal Reddy V et al 2015 Superlattices Microstruct. 86 157
[12]Stafford L, Voss L F, Pearton S J et al 2006 Appl. Phys. Lett. 89 10
[13]Voss L F, Stafford L, Thaler G T et al 2007 J. Electron. Mater. 36 384
[14]Yu L S, Qiao D, Jia L et al 2001 Appl. Phys. Lett. 79 4536
[15]Choi Y Y, Kim S, Oh M et al 2015 Superlattices Microstruct. 77 76
[16]Nguyen N D, Germain M, Schmeits M et al 2001 J. Appl. Phys. 90 985
[17]Cowley A M 1966 J. Appl. Phys. 37 3024
[18]Terman L M 1962 Solid-State Electron. 5 285
[19]Kar S and Dahlke W E 1972 Solid-State Electron. 15 221
[20]Castagne R and vapaille A 1971 Surf. Sci. 28 157
[21]Yu L S, Jia L, Qiao D et al 2003 IEEE Trans. Electron Devices 50 292
[22]Shiojima K, Sugahara T and Sakai S 1999 Appl. Phys. Lett. 74 1936
[23]Berglund C N 1966 IEEE Trans. Electron Devices 13 701
[24]Sze S M and Kwok K 2006 Physics of Semiconductor Devices (Hoboken NJ: Wiley)
[25]Turut A, Doğan H and Yıldırım N 2015 Mater. Res. Express 2 096304
[26]Nicollian E H and Brews J R 1982 Metal Oxide Semiconductor Physics and Technology (New York: Wiley)
[27]Qian F, Kai D, Yu K L et al 2013 Chin. Phys. Lett. 30 127302
[28]Demirezen S Ã 2010 Physica B 405 1130
[29]Doǧan H, Yildirim N, Orak I et al 2015 Physica B 457 48
[30]Zhao M and Liu X Y 2015 Chin. Phys. Lett. 32 048501
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 097301
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 097301
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 097301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 097301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 097301
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 097301
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 097301
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 097301
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 097301
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 097301
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 097301
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 097301
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 097301
Viewed
Full text


Abstract