Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 094201    DOI: 10.1088/0256-307X/34/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating
Xia-Zhi Li1, Hong-Bin Zhuo1,2,3**, De-Bin Zou1**, Shi-Jie Zhang1, Hong-Yu Zhou1, Na Zhao1, Yue Lang1, De-Yao Yu1
1College of Science, National University of Defense Technology, Changsha 410073
2IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240
3Institute of Applied Physics and Computational Mathematics, Beijing 100094
Cite this article:   
Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou et al  2017 Chin. Phys. Lett. 34 094201
Download: PDF(769KB)   PDF(mobile)(765KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The simple surface current model is extended to study the generation of high-order harmonics for a relativistic circularly polarized laser pulse interacting with a plasma grating surface. Both exact relativistic electron dynamics and optical interference of surface periodic structure are considered. It is found that high order harmonics in the specular direction are obviously suppressed whereas the harmonics of the grating periodicity are strongly enhanced and folded into small solid angles with respect to the surface direction. The conversion efficiency of certain harmonics is five orders of magnitude higher than that of the planar target cases. It provides an effective approach to generate a coherent radiation within the so-called 'water window' while maintaining high conversion efficiency and narrow angle spread.
Received: 24 May 2017      Published: 15 August 2017
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.79.Dj (Gratings)  
  28.52.Av (Theory, design, and computerized simulation)  
  28.52.-s (Fusion reactors)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11375265, 11475259 and 11675264, the National Basic Research Program of China under Grant No 2013CBA01504, and the Science Challenge Project under Grant No JCKY2016212A505.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/094201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xia-Zhi Li
Hong-Bin Zhuo
De-Bin Zou
Shi-Jie Zhang
Hong-Yu Zhou
Na Zhao
Yue Lang
De-Yao Yu
[1]Ganeev R A, Suzuki M, Baba M and Kuroda H 2009 Appl. Phys. Lett. 94 051101
[2]Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[3]Cavalieri A L, Müller N, Uphues T et al 2007 Nature 449 1029
[4]Laovorakiat C, Siemens M, Murnane M M et al 2009 Phys. Rev. Lett. 103 257402
[5]Brau C A 1988 Science 239 1115
[6]Andreev N E, Kuznetsov S V, Pogosova A A et al 2003 Phys. Rev. ST Accel. Beams 6 041301
[7]Burza M, Gonoskov A, Svensson K et al 2013 Phys. Rev. ST Accel. Beams 16 011301
[8]Hentschel M, Kienberger R and Spielmann C 2001 Nature 414 509
[9]Kienberger R, Goulielmakis E, Uiberacker M et al 2004 Nature 427 817
[10]Zhang J, Du H, Pan X F et al 2016 Chin. Phys. B 25 113201
[11]Yi L X, Feng L H, Shen L X et al 2016 Acta Phys. Sin. 65 123201 (in Chinese)
[12]Shen L X, Yi L X, Qun W et al 2015 Acta Phys. Sin. 64 193201 (in Chinese)
[13]Bulanov S V, Naumova N M and Pegoraro F 1994 Phys. Plasmas 1 745
[14]Lichters R, Meyer-Ter-Vehn J and Pukhov A 1996 Phys. Plasmas 3 3425
[15]Naumova N M, Nees J A, Sokolov I V et al 2004 Phys. Rev. Lett. 92 063902
[16]Geissler M, Rykovanov S, Schreiber J et al 2007 New J. Phys. 9 218
[17]Mikhailova Y M, Platonenko V T and Rykovanov S G 2005 JETP Lett. 81 571
[18]Baeva T, Gordienko S and Pukhov A 2006 Phys. Rev. E 74 046404
[19]Yu W, Yu M Y, Zhang J and Xu Z 1998 Phys. Rev. E 57 R2531
[20]Brownell J H, Walsh J and Doucas G 1998 Phys. Rev. E 57 1075
[21]Liu C S, Tripathi V K, Shao X and Liu T C 2015 Phys. Plasmas 22 023105
[22]Tatjana B and Violeta M 2015 J. Russ. Laser Res. 36 31
[23]Liang Q T 2012 Advanced Physical Optics (Beijing: Electronics Industry)
[24]Zhang S J, Zhuo H B, Zou D B et al 2016 Phys. Rev. E 93 053206
[25]Gibbon P 1996 Phys. Rev. Lett. 76 50
[26]Dromey B, Kar S, Zepf M and Foster P 2004 Rev. Sci. Instrum. 75 645
[27]Ceccotti T, Floquet V, Sgattoni A et al 2013 Phys. Rev. Lett. 111 185001
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 094201
[2] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 094201
[3] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 094201
[4] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 094201
[5] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 094201
[6] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 094201
[7] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 094201
[8] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 094201
[9] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 094201
[10] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 094201
[11] Li Zhao, Zhi-Jing Chen, Hai-Bo Sang, Bai-Song Xie. Spatial Characteristics of Thomson Scattering Spectra in Laser and Magnetic Fields[J]. Chin. Phys. Lett., 2019, 36(7): 094201
[12] Jie Shao, Cai-Ping Zhang, Jing-Chao Jia, Jun-Lin Ma, Xiang-Yang Miao. Effect of Carrier Envelope Phase on High-Order Harmonic Generation from Solid[J]. Chin. Phys. Lett., 2019, 36(5): 094201
[13] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 094201
[14] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 094201
[15] Yang-Yang Liu, Kun Zhao, Peng He, Hang-Dong Huang, Hao Teng, Zhi-Yi Wei. High-Efficiency Generation of 0.12mJ, 8.6Fs Pulses at 400nm Based on Spectral Broadening in Solid Thin Plates[J]. Chin. Phys. Lett., 2017, 34(7): 094201
Viewed
Full text


Abstract