Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 080202    DOI: 10.1088/0256-307X/34/8/080202
GENERAL |
A Realization of the $W_{1+\infty}$ Algebra and Its $n$-Algebra
Chun-Hong Zhang, Rui Wang, Ke Wu, Wei-Zhong Zhao**
School of Mathematical Sciences, Capital Normal University, Beijing 100048
Cite this article:   
Chun-Hong Zhang, Rui Wang, Ke Wu et al  2017 Chin. Phys. Lett. 34 080202
Download: PDF(514KB)   PDF(mobile)(511KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a realization of the $W_{1+\infty}$ algebra and investigate its $n$-algebra, which is different from the $n$-algebra of Zhang et al. [2016 arXiv:1606.07570v2] It is found that the generators $W_m^{s}$ with any fixed superindex $s\geqslant 1$ yield the null sub-$2s$-algebra. The nontrivial sub-$4$-algebra and Virasoro–Witt $3$-algebra are presented. Moreover, we extend the generators to the multi-variables case. These generators also yield the $W_{1+\infty}$ algebra and null $n$-algebras.
Received: 13 April 2017      Published: 22 July 2017
PACS:  02.20.Tw (Infinite-dimensional Lie groups)  
  02.30.Ik (Integrable systems)  
  11.25.Hf (Conformal field theory, algebraic structures)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11375119 and 11475116.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/080202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/080202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chun-Hong Zhang
Rui Wang
Ke Wu
Wei-Zhong Zhao
[1]Bakas I 1989 Phys. Lett. B 228 57
[2]Bilal A 1989 Phys. Lett. B 227 406
[3]Pope C N, Shen X and Romans L J 1990 Nucl. Phys. B 339 191
[4]Yu F and Wu Y S 1991 Phys. Lett. B 263 220
[5]Yamagishi K 1991 Phys. Lett. B 259 436
[6]Calogero F 1971 J. Math. Phys. 12 419
[7]Moser J 1975 Adv. Math. 16 197
[8]Sutherland B 1972 Phys. Rev. A 5 1372
[9]Hikami K and Wadati M 1994 Phys. Rev. Lett. 73 1191
[10]Bagger J and Lambert N 2007 Phys. Rev. D 75 045020
[11]Gustavsson A 2009 Nucl. Phys. B 811 66
[12]Chen M R, Wang S K, Wu K and Zhao W Z 2012 J. High Energy Phys. 2012 030
[13]Chen M R, Wang S K, Wang X L, Wu K and Zhao W Z 2015 Nucl. Phys. B 891 655
[14]Estienne B, Regnault N and Bernevig B A 2012 Phys. Rev. B 86 241104(R)
[15]Neupert T, Santos L, Ryu S, Chamon C and Mudry C 2012 Phys. Rev. B 86 035125
[16]Hasebe K 2014 Nucl. Phys. B 886 681
[17]Hasebe K 2014 Nucl. Phys. B 886 952
[18]Nambu Y 1973 Phys. Rev. D 7 2405
[19]Takhtajan L 1994 Commun. Math. Phys. 160 295
[20]Curtright T, Fairlie D, Jin X, Mezincescu L and Zachos C 2009 Phys. Lett. B 675 387
[21]Bremner M R 1998 J. Algebra 206 615
[22]Bremner M R and Peresi L A 2006 Linear Algebra Appl. 414 1
[23]Filippov V T 1986 Sib. Math. J. 26 879
[24]Curtright T L, Fairlie D B and Zachos C K 2008 Phys. Lett. B 666 386
[25]de Azcárraga J A and Pérez-Bueno J C 1997 Commun. Math. Phys. 184 669
[26]de Azcárraga J A and Izquierdo J M 2010 J. Phys. A 43 293001
[27]Cappelli A, Trugenberger C A and Zemba G R 1993 Nucl. Phys. B 396 465
[28]Kogan I I 1994 Int. J. Mod. Phys. A 9 3887
[29]Zhang C H, Ding L, Yan Z W, Wu K and Zhao W Z 2016 arXiv:1606.07570v2
Related articles from Frontiers Journals
[1] YANG Yan-Xin, YAO Shao-Kui, ZHANG Chun-Hong, ZHAO Wei-Zhong. Realization of the Infinite-Dimensional 3-Algebras in the Calogero–Moser Model[J]. Chin. Phys. Lett., 2015, 32(4): 080202
[2] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 080202
[3] KANG Jing, QU Chang-Zheng,. Linearization of Systems of Nonlinear Diffusion Equations[J]. Chin. Phys. Lett., 2007, 24(9): 080202
[4] QU Chang-Zheng, ZHANG Shun-Li. Group Foliation Method and Functional Separation of Variables to Nonlinear Diffusion Equations[J]. Chin. Phys. Lett., 2005, 22(7): 080202
[5] LOU Sen-Yue, LAIN Zeng-Ju. Searching for Infinitely Many Symmetries and Exact Solutions via Repeated Similarity Reductions[J]. Chin. Phys. Lett., 2005, 22(1): 080202
[6] LOU Sen-Yue. Localized Excitations in (3+1) Dimensions: Dromions, Ring-Shape and Bubble-Like Solitons[J]. Chin. Phys. Lett., 2004, 21(6): 080202
[7] ZHANG Shan-Qing, LI Zhi-Bin. Infinite-Parameter Potential Symmetries and a New Exact Solution for the Particle-Cluster Dynamic Equation[J]. Chin. Phys. Lett., 2004, 21(2): 080202
[8] LIAN Zeng-Ju, LOU Sen-Yue,. Symmetries and Strong Symmetries of the (3+1)-Dimensional Burgers Equation[J]. Chin. Phys. Lett., 2004, 21(2): 080202
Viewed
Full text


Abstract