Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077301    DOI: 10.1088/0256-307X/34/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence
Wei-Jing Qi, Long-Quan Xu**, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang
National Institute of LED on Si Substrate, Nanchang University, Nanchang 330047
Cite this article:   
Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo et al  2017 Chin. Phys. Lett. 34 077301
Download: PDF(699KB)   PDF(mobile)(697KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350 K. It is observed that with the decrease of the growth temperature of the superlattice from 895$^{\circ}\!$C to 855$^{\circ}\!$C, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K–150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.
Received: 17 March 2017      Published: 23 June 2017
PACS:  73.21.Cd (Superlattices)  
  78.60.Fi (Electroluminescence)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  77.65.Ly (Strain-induced piezoelectric fields)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61334001, the National Key Research and Development Program of China under Grant Nos 2016YFB0400600, 2016YFB0400601 and 2016YFB0400100, the National Science Foundation for Young Scientists of China under Grant No 21405076, and the Fund for Less Developed Regions of the National Natural Science Foundation of China under Grant No 11364034.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Jing Qi
Long-Quan Xu
Chun-Lan Mo
Xiao-Lan Wang
Jie Ding
Guang-Xu Wang
Shuan Pan
Jian-Li Zhang
Xiao-Ming Wu
Jun-Lin Liu
Feng-Yi Jiang
[1]Tong J H, Zhao B J, Ren Z W, Wang X F, Chen X and Li S L 2013 Chin. Phys. Lett. 30 058503
[2]Wang L, Meng X, Song J H, Kim T S, Lim S Y, Hao Z B, Luo Y, Sun C Z, Han Y J, Xiong B, Wang J and Li H T 2017 Chin. Phys. Lett. 34 017301
[3]Chang S P, Wang C H, Chiu C H, Li J C, Lu Y S, Li Z Y, Yang H C, Kuo H C, Lu T C and Wang S C 2010 Appl. Phys. Lett. 97 251114
[4]Kudryk Y Y, Tkachenko A K and Zinovchuk A V 2012 Semicond. Sci. Technol. 27 055013
[5]Hammersley S, Badcock T J, Watson-Parris D, Godfrey M J, Dawson P, Kappers M J and Humphreys C J 2011 Phys. Status Solidi C 8 2194
[6]Shin D S, Han D P, Oh J Y and Shim J I 2012 Appl. Phys. Lett. 100 153506
[7]Mo C L, Fang W Q, Pu Y, Liu H C and Jiang F Y 2005 J. Cryst. Growth 285 312
[8]Liu J L, Feng F F, Zhou Y H, Zhang J L and Jiang F Y 2011 Appl. Phys. Lett. 99 111112
[9]Götz W, Johnson N M, Walker J, Bour D P and Street R A 1996 Appl. Phys. Lett. 68 667
[10]Quan Z J, Liu J L, Fang F, Wang G X and Jiang F Y 2015 J. Appl. Phys. 118 193102
[11]Han D P, Zheng D G, Oh C H, Kim H, Shim J I, Shin D S and Kim K S 2014 Appl. Phys. Lett. 104 151108
[12]Lee C M, Chuo C C, Dai J F, Zheng X F and Chyi J I 2001 J. Appl. Phys. 89 6554
[13]Wu X M, Liu J L, Quan Z J, Xiong C B, Zheng C D, Zhang J L, Mao Q H and Jiang F Y 2014 Appl. Phys. Lett. 104 221101
[14]Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 077301
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 077301
[3] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 077301
[4] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 077301
[5] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 077301
[6] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 077301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 077301
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 077301
[9] Solaimani M.. Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(11): 077301
[10] HAO Hong-Yue, XIANG Wei, WANG Guo-Wei, XU Ying-Qiang, REN Zheng-Wei, HAN Xi, HE Zhen-Hong, LIAO Yong-Ping, WEI Si-Hang, NIU Zhi-Chuan. Wet Chemical Etching of Antimonide-Based Infrared Materials[J]. Chin. Phys. Lett., 2015, 32(10): 077301
[11] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 077301
[12] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 077301
[13] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 077301
[14] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 077301
[15] LU Shuo, SHANG Jia-Xiang, ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance[J]. Chin. Phys. Lett., 2007, 24(11): 077301
Viewed
Full text


Abstract