Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 052801    DOI: 10.1088/0256-307X/34/5/052801
NUCLEAR PHYSICS |
High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC
Yu-Zhu Liu1, Bing-Sheng Li2**, Li Zhang3
1Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3Department of Physics, School of Science, Lanzhou University of Technology, Lanzhou 730050
Cite this article:   
Yu-Zhu Liu, Bing-Sheng Li, Li Zhang 2017 Chin. Phys. Lett. 34 052801
Download: PDF(4634KB)   PDF(mobile)(4630KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The $\langle0001\rangle$-oriented 6H-SiC wafers are implanted with 15 keV helium ions at a dose of 1$\times$10$^{17}$ cm$^{-2}$ at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473 K for 30 min. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273 K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealing abides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120–135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236 eV.
Received: 14 January 2017      Published: 29 April 2017
PACS:  28.41.Qb (Structural and shielding materials)  
  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
  81.40.Wx (Radiation treatment)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11475229.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/052801       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/052801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Zhu Liu
Bing-Sheng Li
Li Zhang
[1]Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329
[2]Snead L L, Katoh Y, Henager C H, Hasegawa A, Kohyama A and Riccardi B 2007 J. Nucl. Mater. 367 659
[3]Katoh Y, Kohyama A, Nozawa T and Sato M 2004 J. Nucl. Mater. 329 587
[4]Kazan M, Ottaviani L, Moussaed E, Nader R and Masri P 2008 J. Appl. Phys. 103 053707
[5]Boninelli S, Claverie A, Impellizzeri G, Mirabella S, Priolo F, Napolitani E and Cristiano F 2006 Appl. Phys. Lett. 89 171916
[6]Tong Q Y, Lee T H, Werner P, GÖsele U, Bergmann R B and Werner J H 1997 J. Electrochem. Soc. 144 L111
[7]Raineri V, Fallica P G and Libertio S 1996 J. Appl. Phys. 79 9012
[8]Ou X, KÖgler R, MÜcklich A, Skorupa W, MÖller W, Wang X and Vines L 2009 Appl. Phys. Lett. 94 011903
[9]Li B S, Zhang C H, Zhou L H and Yang Y T 2008 Chin. Phys. Lett. 25 3720
[10]Li B S, Zhang C H, Zhang H H, Zhang Y, Yang Y T and Zhang L Q 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 739
[11]Zhang C H, Donnelly S E, Vishnyakov V M and Evans J H 2003 J. Appl. Phys. 94 6017
[12]Beaufort M F, Pailloux F, Declémy A and Barbot J F 2003 J. Appl. Phys. 94 7116
[13]Oliviero E, David M L, Beaufort M F, Nomgaudyte J, Pranevicius L and Declemy A B J F 2002 J. Appl. Phys. 91 1179
[14]Li B S, Zhang C H, Zhang H H, Shibayama T and Yang Y T 2011 Vacuum 86 452
[15]Zieler J F, Biersack J P and Littmark U 1984 The Stopping Power and Range of Ions in Soilds (New York: Pergamon Press)
[16]Li B S and Wang Z G 2015 J. Phys. D 48 225101
[17]Grisolia J, Cristinano F, De B, Ben G, Letertre F, Aspar B, Di L and Claverie A 2000 J. Appl. Phys. 87 8415
[18]Weber W J, Gao F, Devanathan R, Jiang W L and Zhang Y W 2004 Mater. Res. Soc. Symp. Proc. 792 R5.1.1
[19]AL-Hamadany R, Goss J P, Briddon P R, Mojarad S A, O'Neill A G and Rayson M J 2013 J. Appl. Phys. 113 224108
[20]Heine V, Cheng C, Engel G E and Needs R J 1992 Mater. Res. Soc. Symp. Proc. 242 507
[21]Heera V, Kogler R, Skorupa W and Stoemenos J 1995 Appl. Phys. Lett. 67 1999
Related articles from Frontiers Journals
[1] Yi Han, Bing-Sheng Li, Zhi-Guang Wang, Jin-Xin Peng, Jian-Rong Sun, Kong-Fang Wei, Cun-Feng Yao, Ning Gao, Xing Gao, Li-Long Pang, Ya-Bin Zhu, Tie-Long Shen, Hai-Long Chang, Ming-Huan Cui, Peng Luo, Yan-Bin Sheng, Hong-Peng Zhang, Xue-Song Fang, Si-Xiang Zhao, Jin Jin, Yu-Xuan Huang, Chao Liu, Dong Wang, Wen-Hao He, Tian-Yu Deng, Peng-Fei Tai, Zhi-Wei Ma. H-ion Irradiation-induced Annealing in He-ion Implanted 4H-SiC[J]. Chin. Phys. Lett., 2017, 34(1): 052801
[2] PANG Hong-Chao&sup, LUO Shun-Zhong&sup, LONG Xing-Gui&sup, AN Zhu&sup, LIU Ning&sup, DUAN Yan-Min&sup, WU Xing-Chun&sup, YANG Ben-Fu&sup, WANG Pei-Lu&sup, ZHENG Si-Xiao. Effects of Substrate Temperature on Helium Content and Microstructure of Nanocrystalline Titanium Films[J]. Chin. Phys. Lett., 2006, 23(12): 052801
[3] JIN Qin-Hua, HU Pei-Gang, LING Hao, WU Jia-Da, SHI Li-Qun, ZHOU Zhu-Ying. Helium-Charged Titanium Films Deposited by Pulsed Laser Deposition in an Electron-Cyclotron-Resonance Helium Plasma Environment [J]. Chin. Phys. Lett., 2003, 20(3): 052801
Viewed
Full text


Abstract