Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 050301    DOI: 10.1088/0256-307X/34/5/050301
GENERAL |
Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation
Muhammad Adeel Ajaib1,2**
1Department of Physics, California Polytechnic State University, San Luis Obispo 93401, USA
2Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar
Cite this article:   
Muhammad Adeel Ajaib 2017 Chin. Phys. Lett. 34 050301
Download: PDF(308KB)   PDF(mobile)(311KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the equivalent form of the Lévy-Leblond equation such that the nilpotent matrices are two-dimensional. We show that this equation can be obtained in the non-relativistic limit of the (2+1)-dimensional Dirac equation. Furthermore, we analyze the case with four-dimensional matrices, propose a Hamiltonian for the equation in (3+1) dimensions, and solve it for a Coulomb potential. The quantized energy levels for the hydrogen atom are obtained, and the result is consistent with the non-relativistic quantum mechanics.
Received: 25 January 2017      Published: 29 April 2017
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/050301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Muhammad Adeel Ajaib
[1]Lévy-Leblond J M 1967 Commun. Math. Phys. 6 286
[2]Ajaib M A 2015 Found. Phys. 45 1586
[3]Ajaib M A 2016 Int. J. Quantum Found. 2 109
[4]Sobhani H and Hassanabadi H 2016 arXiv:1605.09158
[5]Sakurai J J and Napolitano J J 2014 Modern Quantum Mechanics 2nd edn (New York: Pearson Higher)
[6]Sakurai J J 1967 Advanced Quantum Mechanics (New York: Addison-Wesley)
[7]Greiner W 2000 Relativistic Quantum Mechanics (Berlin: Springer-Verlag)
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 050301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 050301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 050301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 050301
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050301
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 050301
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 050301
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 050301
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 050301
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 050301
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 050301
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 050301
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 050301
[15] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 050301
Viewed
Full text


Abstract