Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 047401    DOI: 10.1088/0256-307X/34/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electrical Transport Properties of Type-VIII Sn-Based Single-Crystalline Clathrates (Eu/Ba)$_{8}$Ga$_{16}$Sn$_{30}$ Prepared by Ga Flux Method
Shu-Ping Deng1, Feng Cheng1, De-Cong Li2, Yu Tang1, Zhong Chen1, Lan-Xian Shen1, Hong-Xia Liu1, Pei-Zhi Yang, Shu-Kang Deng1**
1Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology (Ministry of Education), Yunnan Normal University, Kunming 650500
2Photoelectric Engineering College, Yunnan Open University, Kunming 650500
Cite this article:   
Shu-Ping Deng, Feng Cheng, De-Cong Li et al  2017 Chin. Phys. Lett. 34 047401
Download: PDF(687KB)   PDF(mobile)(679KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single-crystalline samples of Eu/Ba-filled Sn-based type-VIII clathrate are prepared by the Ga flux method with different stoichiometric ratios. The electrical transport properties of the samples are optimized by Eu doping. Results indicate that Eu atoms tend to replace Ba atoms. With the increase of the Eu initial content, the carrier density increases and the carrier mobility decreases, which leads to an increase of the Seebeck coefficient. By contrast, the electrical conductivity decreases. Finally, the sample with Eu initial content of $x=0.75$ behaves with excellent electrical properties, which shows a maximal power factor of 1.51 mW$\cdot$m$^{-1}$K$^{-2}$ at 480 K, and the highest $ZT$ achieved is 0.87 near the temperature of 483 K.
Received: 03 December 2016      Published: 21 March 2017
PACS:  74.25.fg (Thermoelectric effects)  
  74.25.fc (Electric and thermal conductivity)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51262032.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/047401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/047401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Ping Deng
Feng Cheng
De-Cong Li
Yu Tang
Zhong Chen
Lan-Xian Shen
Hong-Xia Liu
Pei-Zhi Yang
Shu-Kang Deng
[1]Pei Y, Shi X, Lalonde A, Wang H and Chen L 2011 Nature 473 66
[2]Koumoto K and Mori T 2013 Progress in Mathematical Physics (Berlin: Springer) p 2741
[3]Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew. Chem. Int. Ed. 48 8616
[4]Ioffe A F, Stil'bans L S, Iordanishvili E K, Stavitskaya T S and Gelbtuch A 1957 Progress in Physics Today (London: Infosearch Limited) p 372
[5]Li D C, Fang L, Deng S K, Ruan H B, Saleem M, Wei W H and Kong C Y 2011 J. Electron. Mater. 40 1298
[6]Kono Y, Ohya N, Taguchi T, Suekuni K, Takabatake T, Yamanaka S and Akai K 2010 J. Appl. Phys. 107 123720
[7]Du B L, Saiga Y, Kajisa K and Takabatake T 2012 J. Appl. Phys. 111 013707
[8]Du B L, Saiga Y, Kajisa K, Takabatake T, Nishibori E and Sawa H 2012 Philos. Mag. 92 2541
[9]Kishimoto K, Ikeda N, Akai K and Koyanagi T 2008 Appl. Phys. Express 1 031201
[10]Phan M H, Woods G T, Chaturvedi A, Stefanosk S, Nolas G S and Srikanth H 2008 Appl. Phys. Lett. 93 252505
[11]Norouzzadeh P, Myles C W and Vashaee D 2013 J. Appl. Phys. 114 193509
[12]Blake N P, Mo L, Kresse G and Metiu H 1999 J. Chem. Phys. 111 3133
[13]Norouzzadeh P, Myles C W and Vashaee D 2013 J. Appl. Phys. 114 163509
[14]Meng D Y, Shen L X, Shai X X, Dong G J and Deng S K 2013 Acta Phys. Sin. 62 247401 (in Chinese)
[15]Saiga Y, Suekuni K, Deng S K, Yamamoto T, Kono Y, Ohya N and Takabatake T 2010 J. Alloys Compd. 507 1
[16]Deng S K, Saiga Y, Kajisa K and Takabatake T 2011 J. Appl. Phys. 109 103704
[17]Chen Y, Du B L, Kajisa K and Takabatake T 2014 J. Electron. Mater. 43 1916
[18]Kono Y, Akai K, Ohya N, Saiga Y, Suekuni K, Takabatake T and Yamamoto S 2012 Mater. Trans. 53 636
[19]Cheng F, Shen L X, Li D C, Liu H X, Wang J S and Deng S K 2016 J. Mater. Eng. Perform. 25 2180
[20]Bridges F and Downward L 2004 Phys. Rev. B 70 140201
[21]Avila M A, Suekuni K, Umeo K, Fukuoka H, Yamanaka S and Takabatake T 2006 Phys. Rev. B 74 125109
[22]Iwamoto K, Mori T, Kajitani S, Matsumoto H, Toyota N, Suekuni K and Takabatake T 2013 Phys. Rev. B 88 104308
[23]Cheng F, Shen L X, Li D C, Liu H X, Wang J S and Deng S K 2017 Mater. Technol. 32 105
[24]Avila M A, Huo D, Sakata T, Suekuni K and Takabatake T 2006 J. Phys.: Condens. Matter 18 1585
[25]Liu L, Song B, Sun B, Ma H, Ma X and Li Y 2016 Physica B 485 84
[26]Zhao J T and Corbett J D 1994 Inorg. Chem. 33 2079
[27]Eisenmann B, Schäfer H and Zagler R 1986 Less-common. Met. 118 43
[28]Saiga Y, Du B L, Deng S K, Kajisa K and Takabatake T 2012 J. Alloys Compd. 537 303
[29]Caillt T, Borahchevsky A and Fleurial J P 1997 Mater. Res. Soc. Symp. Proc. 478 103
Related articles from Frontiers Journals
[1] LI Long-Long, XU Wen. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2015, 32(4): 047401
Viewed
Full text


Abstract