CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Pressure Effects on the Charge Carrier Transportation of BaF$_{2}$ Nanocrystals |
Xiao-Yan Cui1, Ting-Jing Hu1**, Jing-Shu Wang1, Jun-Kai Zhang1, Xue-Fei Li1, Jing-Hai Yang1, Chun-Xiao Gao2** |
1Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000 2State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012
|
|
Cite this article: |
Xiao-Yan Cui, Ting-Jing Hu, Jing-Shu Wang et al 2017 Chin. Phys. Lett. 34 046401 |
|
|
Abstract The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to the phase transition of BaF$_{2}$ nanocrystals under high pressure. The charge carriers in BaF$_{2}$ nanocrystals include both F$^{-}$ ions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge–discharge processes in the $Fm3m$ phase more difficult.
|
|
Received: 27 December 2016
Published: 21 March 2017
|
|
PACS: |
64.60.-i
|
(General studies of phase transitions)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11374131, 11674404, 11404137 and 61378085, the Program for New Century Excellent Talents in University under Grant No NCET-13-0824, the Program for the Development of Science and Technology of Jilin Province under Grant Nos 201201079 and 20150204085GX, and the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province under Grant No 20150221. |
|
|
[1] | Moser A, Takano K, Margulies D T et al 2002 J. Phys. D 35 R157 | [2] | Ambashta R D, Yusuf S M, Mukadam M D et al 2005 J. Magn. Magn. Mater. 293 8 | [3] | Rudge S R, Kurtz T L, Vessely C R et al 2000 Biomaterials 21 1411 | [4] | Hilgenkamp H and Mannhart J 2002 Rev. Mod. Phys. 74 485 | [5] | Lin Y, Zhang Z, Tang Z et al 1999 Adv. Mater. Opt. Electron. 9 205 | [6] | Waser R and Hagenbeck R 2000 Acta Mater. 48 797 | [7] | Yang X C, Hao A M, Wang X M et al 2010 Comput. Mater. Sci. 49 530 | [8] | Jiang H T, Pandey R, Darrigan C et al 2003 J. Phys.: Condens. Matter 15 709 | [9] | Dorfman S M, Jiang F, Mao Z et al 2010 Phys. Rev. B 81 174121 | [10] | Kanchana V, Vaitheeswaran G and Rajagopalan M 2003 J. Alloys Compd. 359 66 | [11] | Smith J S, Desgreniers S, Tse J S et al 1950 Phys. Rev. B 79 897 | [12] | Leger J M, Haines J, Atouf A et al 1995 Phys. Rev. B 52 13247 | [13] | Hu T J, Cui X Y, Gao Y et al 2010 Rev. Sci. Instrum. 81 115101 | [14] | Cui X Y, Hu T J, Han Y H et al 2010 Chin. Phys. Lett. 27 036402 | [15] | Hu T J, Cui X Y, Li X F et al 2015 Chin. Phys. Lett. 32 016402 | [16] | Hu T J, Cui X Y, Li X F et al 2015 Chin. Phys. B 24 116401 | [17] | Wang J S, Cui Q L, Hu T J et al 2016 J. Phys. Chem. C 120 12249 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|