Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 041201    DOI: 10.1088/0256-307X/34/4/041201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks
Liang-Kai Wu1**, Xiang-Fei Meng2, Fa-Ling Zhang1
1Faculty of Science, Jiangsu University, Zhenjiang 212013
2National Supercomputer Center, Tianjin 300457
Cite this article:   
Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang 2017 Chin. Phys. Lett. 34 041201
Download: PDF(715KB)   PDF(mobile)(707KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The results on the curvature of a pseudocritical transition line for two-flavor QCD through lattice simulations are presented. The simulations are carried out with Symanzik-improved gauge action and Asqtad fermion action on a lattice $12^3\times4$ at quark mass $am=0.010$. At the imaginary chemical potentials $a\mu_{_{\rm I}}=0.050$, 0.150, 0.200, 0.225 and 0.250, we investigate the chiral condensate $\bar\psi\psi$, plaquette variable $P$ and imaginary part of Polyakov loop ${\rm Im}(L)$ and their susceptibilities. Analytic continuation from an imaginary chemical potential to a real one is used to obtain the expression for transition temperature as a function of the chemical potential. The curvature is 0.0326(46).
Received: 02 November 2016      Published: 21 March 2017
PACS:  12.38.Gc (Lattice QCD calculations)  
  11.10.Wx (Finite-temperature field theory)  
  11.15.Ha (Lattice gauge theory)  
  12.38.Mh (Quark-gluon plasma)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11347029 and 11105033.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/041201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/041201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liang-Kai Wu
Xiang-Fei Meng
Fa-Ling Zhang
[1]Ding H T, Karsch F and Mukherjee S 2015 Int. J. Mod. Phys. E 24 1530007
[2]Cleymans J and Redlich K 1998 Phys. Rev. Lett. 81 5284
[3]Hasenfratz P and Karsch F 1983 Phys. Lett. B 125 308
[4]Philipsen O 2006 PoS LAT 2005 016
Schmidt C 2006 PoS LAT 2006 021
De Forcrand P 2009 PoS LAT 2009 010
Aarts G 2012 PoS LAT 2012 017
[5]Cea P, Cosmai L and Papa A 2016 Phys. Rev. D 93 014507
[6]De Forcrand P and Philipsen O 2010 Phys. Rev. Lett. 105 152001
[7]D'Elia M and Sanfilippo F 2009 Phys. Rev. D 80 111501
[8]Bonati C, Cossu G, D'Elia M and Sanfilippo F 2011 Phys. Rev. D 83 054505
[9]Nagata K and Nakamura A 2011 Phys. Rev. D 83 114507
[10]D'Elia M, Di Renzo F and Lombardo M P 2007 Phys. Rev. D 76 114509
[11]De Forcrand P and Philipsen O 2008 J. High Energy Phys. 0811 012
[12]Wu L K, Luo X Q and Chen H C 2007 Phys. Rev. D 76 034505
[13]Wu L K 2010 Chin. Phys. Lett. 27 021101
[14]Symanzik K 1983 Nucl. Phys. B 226 187
[15]Luscher M and Weisz P 1985 Phys. Lett. B 158 250
[16]Lepage G P and Mackenzie P B 1993 Phys. Rev. D 48 2250
[17]Alford M G, Dimm W, Lepage G P, Hockney G and Mackenzie P B 1995 Phys. Lett. B 361 87
[18]Blum T et al 1997 Phys. Rev. D 55 R1133
[19]Orginos K et al [MILC Collaboration] 1999 Phys. Rev. D 60 054503
[20]Bazavov A et al 2012 Phys. Rev. D 85 054503
[21]Bazavov A et al [MILC Collaboration] 2010 Rev. Mod. Phys. 82 1349
[22]Naik S 1989 Nucl. Phys. B 316 238
[23]Bernard CW et al [MILC Collaboration] 1998 Phys. Rev. D 58 014503
[24]Clark M A and Kennedy A D 2004 Nucl. Phys. Proc. Suppl. 129–130 850
[25]Clark M A and Kennedy A D 2007 Phys. Rev. D 75 011502
[26]Clark M A and Kennedy A D 2007 Phys. Rev. Lett. 98 051601
[27]Takaishi T and De Forcrand P 2006 Phys. Rev. E 73 036706
[28]Omeylan I P, Mryglod I M and Folk R 2003 Comp. Phys. Comm. 151 272
[29]Roberge A and Weiss N 1986 Nucl. Phys. B 275 734
[30]De Forcrand P and Philipsen O 2002 Nucl. Phys. B 642 290
[31]Sommer R 1994 Nucl. Phys. B 411 839
[32]Cheng M et al 2006 Phys. Rev. D 74 054507
[33]Bonati C, D'Elia M, Mariti M, Mesiti M, Negro F and Sanfilippo F 2015 Phys. Rev. D 92 054503
[34]http://physics. utah.edu/ detar/milc/
Related articles from Frontiers Journals
[1] Ming-Zhu Liu and Li-Sheng Geng. Prediction of an $\varOmega_{bbb}\varOmega_{bbb}$ Dibaryon in the Extended One-Boson Exchange Model[J]. Chin. Phys. Lett., 2021, 38(10): 041201
[2] Jia-Liang Zhou, Zhen Cheng, Guang-Yi Xiong, Jian-Bo Zhang. Hopping Parameter Expansion Technique in Noise Method for Disconnected Quark Loops[J]. Chin. Phys. Lett., 2018, 35(4): 041201
[3] FU Zi-Wen** . Lattice QCD Study of the σ Meson[J]. Chin. Phys. Lett., 2011, 28(8): 041201
[4] CAO Jing, ZHAO A-Meng, LUO Liu-Jun, SUN Wei-Min, ZONG Hong-Shi,. Calculation of Quark-Number Susceptibility at Finite Chemical Potential and Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 041201
[5] ZHANG Yan-Bin, SUN Wei-Min, LÜ, Xiao-Fu, ZONG Hong-Shi,. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator[J]. Chin. Phys. Lett., 2009, 26(8): 041201
[6] WU Liang-Kai, LUO Xiang-Qian. Transition Temperature of Two-Degenerate-Flavour QCD in the Chiral Limit[J]. Chin. Phys. Lett., 2007, 24(10): 041201
[7] LIU Liu-Ming, SU Shi-Quan, LI Xin, LIU Chuan. Quenched Charmed Meson Spectra Using Tadpole Improved Quark Action on Anisotropic Lattices[J]. Chin. Phys. Lett., 2005, 22(9): 041201
[8] LIU Da-Qing. Charmonium Spectrum from Quenched Lattice QCD with Tadpole\\ Improvement Action[J]. Chin. Phys. Lett., 2004, 21(11): 041201
[9] DONG Shao-Jing, ZHANG Jian-Bo, YING He-Ping. Empirical Baye’s Method and Roper Resonance State in Very Light Quark Region[J]. Chin. Phys. Lett., 2003, 20(5): 041201
[10] MEI Zhong-Hao, LUO Xiang-Qian, Eric B. GREGORY,. Light Hadron Masses in Quantum Chromodynamics with Valence Wilson Quarks at β = 6.25 from a Parallel PC Cluster[J]. Chin. Phys. Lett., 2002, 19(5): 041201
[11] LIU Chuan, MA Jian-Ping. Light Hadron Masses from Lattice Quantum Chromodynamics on Asymmetric Lattices with Improved Actions[J]. Chin. Phys. Lett., 2002, 19(5): 041201
[12] LIU Da-Qing, WU Ji-Min, CHEN Ying. Calculation of the Perturbative Expansion of Wilson Operators on the Lattice[J]. Chin. Phys. Lett., 2001, 18(11): 041201
[13] YANG Chun, ZHANG Qi-Ren, GAO Chun-Yuan. Variational Calculation in SU(3) Lattice Gauge Theory[J]. Chin. Phys. Lett., 2001, 18(5): 041201
[14] LIU Chuan. A Lattice Study of the Glueball Spectrum[J]. Chin. Phys. Lett., 2001, 18(2): 041201
[15] CHEN Ying, HE Bing, LIU Da-Qing, WU Ji-Min. Topology of SU(2) Vacuum Through Improved Coolings[J]. Chin. Phys. Lett., 2000, 17(9): 041201
Viewed
Full text


Abstract