GENERAL |
|
|
|
|
Round-Robin Differential Phase Shift with Heralded Single-Photon Source |
Ying-Ying Zhang1,2, Wan-Su Bao1,2**, Chun Zhou1,2, Hong-Wei Li1,2, Yang Wang1,2, Mu-Sheng Jiang1,2 |
1Zhengzhou Information Science and Technology Institute, Zhengzhou 450001 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Ying-Ying Zhang, Wan-Su Bao, Chun Zhou et al 2017 Chin. Phys. Lett. 34 040301 |
|
|
Abstract Round-robin differential phase shift (RRDPS) is a novel quantum key distribution protocol which can bound information leakage without monitoring signal disturbance. In this work, to decrease the effect of the vacuum component in a weak coherent pulses source, we employ a practical decoy-state scheme with heralded single-photon source for the RRDPS protocol and analyze the performance of this method. In this scheme, only two decoy states are needed and the yields of single-photon state and multi-photon states, as well as the bit error rates of each photon states, can be estimated. The final key rate of this scheme is bounded and simulated over transmission distance. The results show that the two-decoy-state method with heralded single-photon source performs better than the two-decoy-state method with weak coherent pulses.
|
|
Received: 21 December 2016
Published: 21 March 2017
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261. |
|
|
[1] | Bennett C H and Brassard G 1984 Int. Conf. Comput. Syst. Signal Process (Bangalore, India) (New York: IEEE Press) p 175 | [2] | Lo H K and Chau H F 1999 Science 283 2050 | [3] | Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 | [4] | Ekert A K 1991 Phys. Rev. Lett. 67 661 | [5] | Bennett C H 1992 Phys. Rev. Lett. 68 3121 | [6] | Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902 | [7] | Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901 | [8] | Gu Y B, Bao W S, Wang Y and Zhou C 2016 Chin. Phys. Lett. 33 040301 | [9] | Yin Z Q, An X B and Han Z F 2015 Acta Phys. Sin. 64 140303 (in Chinese) | [10] | Li Y, Bao W S, Li H W, Zhou C and Wang Y 2016 Chin. Phys. B 25 010305 | [11] | Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475 | [12] | Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513 | [13] | Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 | [14] | Zhang Z, Yuan X, Cao Z and Ma X F 2015 arXiv:1505.02481v1 | [15] | Mizutani A, Imoto N and Tamaki K 2015 Phys. Rev. A 92 060303 | [16] | Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2016 Opt. Express 24 20763 | [17] | Zhou C, Zhang Y Y, Bao W S, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. B 26 020303 | [18] | Takesue H, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827 | [19] | Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832 | [20] | Guan J Y, Cao Z and Liu Y 2015 Phys. Rev. Lett. 114 180502 | [21] | Li Y H, Cao Y, Dai H, Lin J et al 2016 Phys. Rev. A 93 030302 | [22] | Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312 | [23] | Wang Q and Karlsson A 2007 Phys. Rev. A 76 014309 | [24] | Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504 | [25] | Gobby C, Yuan Z L and Shield A J 2004 Appl. Phys. Lett. 84 3762 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|