CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells |
Yang Zhang1, Qing Wang1**, Xiao-Bin Zhang2, Na Peng2, Zhen-Qi Liu2, Bing-Zhen Chen2, Shan-Shan Huang2, Zhi-Yong Wang1 |
1Institute of Laser Engineering, Beijing University of Technology, Beijing 100022 2Redsolar New Energy Technology Co. Ltd., Zhongshan 528437
|
|
Cite this article: |
Yang Zhang, Qing Wang, Xiao-Bin Zhang et al 2017 Chin. Phys. Lett. 34 028802 |
|
|
Abstract It is well known that conventional GaInP/GaInAs/Ge three-junction (3J) solar cells are difficult to continue to ascend when the efficiencies reach 32% and 42% under AM0 and AM1.5D concentrated, respectively. In AlGaInP/AlGaInAs/GaInAs/GaInNAs/Ge five-junction (5J) solar cells, the performance of the AlGaInP, AlGaInAs and GaInNAs sub cell is the key factor for conversion efficiency of the 5J solar cell. We investigate the AlGaInP/AlGaInAs/Ge 3J solar cell. By incorporating surfactant trimthylantimony into the AlGaInP material, the crystal quality of AlGaInP is improved and the spectrum absorption range of AlGaInAs is extended. The current density of each sub cell exceeds 11.3 mA/cm$^{2}$ as is desired. Then we apply this 3J structure to grow the lattice-matched 5J solar cell and obtain the short circuit current of 134.96 mA, open circuit voltage of 4399.6 mV, fill factor of 81.7% and conversion efficiency of 29.87%.
|
|
Received: 25 November 2016
Published: 25 January 2017
|
|
PACS: |
88.40.jp
|
(Multijunction solar cells)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] | Ermer J H, Jones R K, Hebert P, Pien P, King R R, Bhusari D, Brandt R, Al O T, Fetzer C M, Kinsey G S and Karam N 2012 IEEE J. Photovoltaics 2 209 | [2] | Wilt D M and Stan M 2012 Industrial & Engineering Chemistry Research 51 11931 | [3] | Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits T N D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T and Schwarzburg K 2014 Prog. Photovoltaics 22 277 | [4] | https://www.ise.fraunhofer.de/en/press and media/pdfs zu presseinfos englisch/2014/press release new world record for solar cell efficiency at 46 percent.pdf | [5] | Chiu P T, Law D C, Woo R L, Singer S B, Bhusari D, Hong W D, Zakaria A, Boisvert J, Mesropian S, King R R and Karam N H 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) 0011 | [6] | Dimroth F, Baur C, Meusel M, Riesen S V and Belt A W 2003 The 3rd World Confrence Photovoltaic Energy Conversion 1 p 616 | [7] | Bertness K A, Kurtz S R, Asher S E and Reedy R C 1999 J. Cryst. Growth 196 13 | [8] | Zhang X B, Chen B Z, Pan X, Wang L, Ma D F, Zhang Y, Yang C B and Wang Z Y 2015 J. Phys. D 48 475106 | [9] | Kurtz S R, Allerman A, Jones E D, Gee J M, Banas J and Hammons B E 1999 Appl. Phys. Lett. 74 729 | [10] | Friedman D J and Kurtz S R 2002 Prog. Photovoltaics 10 331 | [11] | McMahon W E, Emery K E, Friedman D J, Ottoson L, Young M S, Ward J S, Kramer C M, Duda A and Kurtz S 2008 Prog. Photovoltaics 16 213 | [12] | King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Krut D D, Ermer J H, Sherif R A and Karam N H 2007 Adv. OptoElectron. 2007 29523 | [13] | Shurtleff J K, Lee R T, Fetzer C M and Stringfellow G B 1999 Appl. Phys. Lett. 75 1914 | [14] | Lee R T, Shurtlef J K, Fetzer C M, Stringfellow G B, Lee S and Seong T Y 2000 J. Appl. Phys. 87 3730 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|