CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Anisotropic Magnetoresistivity in Semimetal TaSb$_2$ |
Xia-Yin Liu1, Jia-Lu Wang2, Wei You2, Ting-Ting Wang2, Hai-Yang Yang2, Wen-He Jiao1, Hong-Ying Mao2, Li Zhang3, Jie Cheng4, Yu-Ke Li2** |
1Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023 2Department of Physics and Hangzhou Key Laboratory of Quantum Matters, Hangzhou Normal University, Hangzhou 310036 3Department of Physics, China Jiliang University, Hangzhou 310018 4College of Science, Center of Advanced Functional Ceramics, Nanjing University of Posts and Telecommunications, Nanjing 210023
|
|
Cite this article: |
Xia-Yin Liu, Jia-Lu Wang, Wei You et al 2017 Chin. Phys. Lett. 34 127501 |
|
|
Abstract We investigate the anisotropic magnetic transports in topological semimetal TaSb$_2$. The compound shows the large magnetoresistance (MR) without saturation and the metal-insulator-like transition no matter whether the magnetic field is parallel to $c$-axis or $a$-axis, except that the MR for ${\boldsymbol B}\|c$ is almost twice as large as that of ${\boldsymbol B}\|a$ at low temperatures. The adopted Kohler's rule can be obeyed by the MR at distinct temperatures for ${\boldsymbol B}\|c$, but it is slightly violated as ${\boldsymbol B}\|a$. The angle-dependent MR measurements exhibit the two-fold rotational symmetry below 70 K, consistent with the monoclinic crystal structure of TaSb$_2$. The dumbbell-like picture of angle-dependent MR in TaSb$_2$ suggests a strongly anisotropic Fermi surface at low temperatures. However, it finally loses the two-fold symmetry over 70 K, implying a possible topological phase transition at around the temperature where $T_{\rm m}$ is related to a metal-insulator-like transition under magnetic fields.
|
|
Received: 22 September 2017
Published: 24 November 2017
|
|
PACS: |
75.30.Gw
|
(Magnetic anisotropy)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
75.47.De
|
(Giant magnetoresistance)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61401136, 11604299 and 61376094, the Zhejiang Natural Science Foundation of China under Grant No LY18F010019, the Open Program from Wuhan National High Magnetic Field Center under Grant No 2016KF03, and the General Program of Natural Science Foundation of Jiangsu Province under Grant No BK20171440. |
|
|
[1] | Pippard A B 1989 Magnetoresistance in Metals (Cambridge: Cambridge University) | [2] | Moritomo Y, Asamitsu A, Kuwahara H and Tokura T 1996 Nature 380 141 | [3] | Daughton J M 1999 J. Magn. Magn. Mater. 192 334 | [4] | Baibichet M, Broto J M, Fert A, VanDau F N, Petro F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472 | [5] | Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583 | [6] | Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851 | [7] | Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 | [8] | Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 | [9] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373 | [10] | Zhang C, Yuan Z, Xu S, Lin Z, Tong B, Hasan M Z, Wang J, Zhang C and Jia S 2017 Phys. Rev. B 95 085202 | [11] | Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 | [12] | Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 | [13] | Ghimire N J, Luo Y, Neupane M, Williams D J, Bauer E D and Ronning F 2015 J. Phys.: Condens. Matter 27 152201 | [14] | Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee C C, Huang S M, Wang B, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S and Hasan M Z 2015 Nat. Phys. 11 748 | [15] | Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645 | [16] | Arnold F, Shekhar C, Wu S C, Sun Y, Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615 | [17] | Zhang J, Liu F L, Dong J K, Xu Y, Li N N, Yang W G and Li S Y 2015 Chin. Phys. Lett. 32 097102 | [18] | Schoop L M, Ali M N, Strar C, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2016 Nat. Commun. 7 11696 | [19] | Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z 2016 Phys. Rev. Lett. 117 016602 | [20] | Abrikosov A A 1998 Phys. Rev. B 58 2788 | [21] | Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nat. Mater. 14 280 | [22] | Li Y K, Li L, Wang J L, Wang T, Xu X, Xi C, Cao C and Dai J 2016 Phys. Rev. B 94 121115 | [23] | Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103 | [24] | Wu D S, Liao J, Yi W, Wang X, Li P, Weng H, Shi Y G, Li Y, Luo J, Dai X and Fang Z 2016 Appl. Phys. Lett. 108 042105 | [25] | Luo Y K, McDonald R D, Rosa P F S, Scott B, Wakeham N, Ghimire N J, Bauer E D, Thompson J D and Ronning F 2016 Sci. Rep. 6 27294 | [26] | Yuan Z J, Lu H, Liu Y, Wang J and Jia S 2016 Phys. Rev. B 93 184405 | [27] | Shen B, Deng X Y, Kotliar G and Ni N 2016 Phys. Rev. B 93 195119 | [28] | Li Y P, Wang Z, Lu Y, Yang X, Shen Z, Sheng F, Feng C M, Zheng Y and Xu Z A 2016 arXiv:1603.04056 | [29] | Wang K F, Graf D, Li L J, Wang L M and Petrovic C 2015 Sci. Rep. 4 7328 | [30] | Xu C, Chen J, Zhi G X, Li Y, Dai J and Cao C 2016 Phys. Rev. B 93 195106 | [31] | Wang J L, Li L, You W, Wang T T, Cao C, Dai J H and Li Y K 2016 arXiv:1610.08594 | [32] | Kumar N, Sun Y, Xu N, Manna K, Yao M, Suess V, Leermakers I, Young O, Foerster T, Schmidt M, Yan B H, Zeitler U, Shi M, Felser C and Shekhar C 2017 arXiv:1703.04527 | [33] | Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2015 Nat. Phys. 12 272 | [34] | Wang Y Y, Yu Q H and Xia T L 2016 Chin. Phys. B 25 107503 | [35] | Zhou Q, Rhodes D, Zhang Q R, Tang S, Schnemann R and Balicas L 2016 Phys. Rev. B 94 121101 | [36] | Wu Y, Jo N H, Ochi M, Huang L, Mou D X, Bud'ko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602 | [37] | Pletikosi I, Ali M N, Fedorov A V, Cava R J and Valla T 2014 Phys. Rev. Lett. 113 216601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|