CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fano Factor in Strained Graphene Nanoribbon Nanodevices |
Walid Soliman1, Mina D. Asham1**, Adel H. Phillips2 |
1Faculty of Engineering, Benha University, Benha, Egypt 2Faculty of Engineering, AinShams University, Cairo, Egypt
|
|
Cite this article: |
Walid Soliman, Mina D. Asham, Adel H. Phillips 2017 Chin. Phys. Lett. 34 118503 |
|
|
Abstract We investigate the Fano factor in a strained armchair and zigzag graphene nanoribbon nanodevice under the effect of ac field in a wide range of frequencies at different temperatures (10 K–70 K). This nanodevice is modeled as follows: a graphene nanoribbon is connected to two metallic leads. These two metallic leads operate as a source and a drain. The conducting substance is the gate electrode in this three-terminal nanodevice. Another metallic gate is used to govern the electrostatics and the switching of the graphene nanoribbon channel. The substances at the graphene nanoribbon/metal contact are controlled by the back gate. The photon-assisted tunneling probability is deduced by solving the Dirac eigenvalue differential equation in which the Fano factor is expressed in terms of this tunneling probability. The results show that for the investigated nanodevice, the Fano factor decreases as the frequency of the induced ac field increases, while it increases as the temperature increases. In general, the Fano factors for both strained armchair and zigzag graphene nanoribbons are different. This is due to the effect of the uniaxial strain. It is shown that the band structure parameters of graphene nanoribbons at the energy gap, the C–C bond length, the hopping integral, the Fermi energy and the width are modulated by uniaxial strain. This research gives us a promise of the present nanodevice being used for digital nanoelectronics and sensors.
|
|
Received: 01 September 2017
Published: 25 October 2017
|
|
PACS: |
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
85.40.Qx
|
(Microcircuit quality, noise, performance, and failure analysis)
|
|
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S Vet al 2005 Nature 438 197 | [2] | Fiori G, Bonaccorso F, Iannaccone G et al 2014 Nat. Nanotechnol. 9 768 | [3] | Castro Neto A H, Guinea F, Peres N M R et al 2009 Rev. Mod. Phys. 81 109 | [4] | Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807 | [5] | Mina A N and Phillips A H 2013 J. App. Sci. Res. 9 1854 | [6] | Mina A N, Awadallah A A, Phillips A H et al 2012 J. Phys.: Conf. Ser. 343 012076 | [7] | Morozov S V, Novoselov K S, Katsnelson M I et al 2008 Phys. Rev. Lett. 100 016602 | [8] | Lin Y M, Dimitrakopoulos C, Jenkins K A et al 2010 Science 327 662 | [9] | Schedin F, Geim A K, Morozov S V et al 2007 Nat. Mater. 6 652 | [10] | Novoselov K and Geim A K 2007 Mat. Tech. 22 178 | [11] | Mina A N, Shehata W I and Phillips A H 2015 J. Lasers Opt. Photon. 2 1000125 | [12] | Todd K, Chou H T, Amasha S et al 2009 Nano Lett. 9 416 | [13] | Stampfer C, Guttinger J, Hellmuller S et al 2009 Phys. Rev. Lett. 102 056403 | [14] | Jiao L, Wang X, Diankov G et al 2010 Nat. Nanotechnol. 5 321 | [15] | Wang X, Ouyang Y, Li X et al 2008 Phys. Rev. Lett. 100 206803 | [16] | Guttinge J, Seif J, Stampfer C et al 2011 Phys. Rev. B 83 165445 | [17] | Ihn T, Guttinger J, Molitor F et al 2010 Mater. Today 13 44 | [18] | Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 | [19] | Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 | [20] | Sun L, Li Q, Ren H et al 2008 J. Chem. Phys. 129 074704 | [21] | Hod O and Scuseria G E 2009 Nano Lett. 9 2619 | [22] | Blanter Y M and Büttiker M 2000 Phys. Rep. 336 1 | [23] | Sarma S D, Adam S, Hwang E H et al 2011 Rev. Mod. Phys. 83 407 | [24] | Danneau R, Wu F, Craciun M F et al 2008 Phys. Rev. Lett. 100 196802 | [25] | DiCarlo L, Williams J R, Zhang Y et al 2008 Phys. Rev. Lett. 100 156801 | [26] | Dragomirova R L, Areshkin D A and Nikolic B K 2009 Phys. Rev. B 79 241401 | [27] | Yuan J H et al 2011 Phys. Lett. A 375 2670 | [28] | San-Jose P, Prada E and Golubev D S 2007 Phys. Rev. B 76 195445 | [29] | Mohamed W S, Asham M D and Phillips A H 2016 J. Multidisc. Eng. Sci. Tech. 3 4759 | [30] | Mohamed W S, Asham M D and Phillips A H 2017 J. Multidisc. Eng. Sci. Tech. 4 6720 | [31] | Li Y X and Xu L F 2011 Solid State Commun. 151 219 | [32] | Li G, Chen G and Peng P 2013 Phys. Lett. A 377 2895 | [33] | Abdelrazek A S, Zein W A and Phillips A H 2013 J. Comput. Theor. Nanosci. 10 1257 | [34] | Brey L and Fertig H A 2006 Phys. Rev. B 73 235411 | [35] | Oosterkamp T H, Kouwenhoven L P, Koolen A E A et al 1996 Semicond. Sci. Technol. 11 1512 | [36] | Mei H, Yong Z and HongBo Z 2010 Chin. Phys. Lett. 27 037302 | [37] | Li Y, Jiang X, Liu Z et al 2010 Nano Res. 3 545 | [38] | Wang J, Zhao R, Yang M et al 2013 J. Chem. Phys. 138 084701 | [39] | Liao W H, Zhou B H, Wang H Y et al 2010 Eur. Phys. J. B 76 463 | [40] | Harrison W A 1989 (New York: Dover Publications) | [41] | Hasegawa Y, Konno R, Nakano H et al 2006 Phys. Rev. B 74 033413 | [42] | Lu Y and Guo J 2010 Nano Res. 3 189 | [43] | Chen Q and Zhao H K 2008 Eur. Phys. J. B 64 237 | [44] | Parmentier F D, Serkovic-Loli L N, Roulleau P et al 2016 Phys. Rev. Lett. 116 227401 | [45] | Camalet S, Kohler S and Hanggi P 2004 Phys. Rev. B 70 155326 | [46] | Camalet S, Lehmann J, Kohler S et al 2003 Phys. Rev. Lett. 90 210602 | [47] | Zein W A, Ibrahim N A and Phillips A H 2011 Prog. Phys. 1 65 | [48] | Tan Z B, Puska A, Nieminen T et al 2013 Phys. Rev. B 88 245415 | [49] | Korniyenko Y, Shevtsov O and Löfwander T 2017 Phys. Rev. B 95 165420 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|