CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
High-Quality FeTe$_{1-x}$Se$_{x}$ Monolayer Films on SrTiO$_{3}$(001) Substrates Grown by Molecular Beam Epitaxy |
Zhi-Qing Han1, Xun Shi2, Xi-Liang Peng2, Yu-Jie Sun2**, Shan-Cai Wang1** |
1Department of Physics, Beijing Key Laboratory of Opto-Electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872 2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Zhi-Qing Han, Xun Shi, Xi-Liang Peng et al 2017 Chin. Phys. Lett. 34 107401 |
|
|
Abstract We report the growth process of FeTe$_{1-x}$Se$_x$ ($0\le x \le 1$) monolayer films on SrTiO$_{3}$ (STO) substrates through molecular beam epitaxy and discuss the possible ways to improve the film quality. By exploring the parameters of substrate treatment, growth control and post growth annealing, we successfully obtain a series of FeTe$_{1-x}$Se$_x$ monolayer films. In the whole growth process, we find the significance of the temperature control through surface roughness monitored by the reflection high-energy electron diffraction and scanning tunneling microscopy. We obtain the best quality of FeSe monolayer films with the STO substrate treated at $T=900$–$950^{\circ\!}$C before growth, the FeSe deposited at $T=310^{\circ\!}$C during growth and annealed at $T=380^{\circ\!}$C after growth. For FeTe$_{1-x}$Se$_x$ ($x < 1$), both the growth temperature and annealing temperature decrease to $T=260^{\circ\!}$C. According to the angle-resolved photoemission spectroscopy measurements, the superconductivity of the FeTe$_{1-x}$Se$_x$ film is robust and insensitive to Se concentration. All the above are instructive for further investigations of the superconductivity in FeTe$_{1-x}$Se$_x$ films.
|
|
Received: 19 June 2017
Published: 27 September 2017
|
|
PACS: |
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
|
Fund: Supported by the Ministry of Science and Technology of China under Grant Nos 2015CB921000, 2016YFA0401000, 2015CB921301 and 2016YFA0300300, and the National Natural Science Foundation of China under Grant Nos 11274381, 11574371, 11274362, 1190020, 11334012 and 11674371. |
|
|
[1] | Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262 | [2] | Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C and Wu M K 2008 Europhys. Lett. 84 37002 | [3] | Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L and Mao Z Q 2008 Phys. Rev. B 78 224503 | [4] | Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus D and Mozharivskyj Y 2009 Phys. Rev. B 79 094521 | [5] | Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 | [6] | Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L and Mao Z Q 2009 Phys. Rev. Lett. 102 247001 | [7] | Li S L, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J P, Huang Y L, Hsu F C, Yeh K W, Wu M K and Dai P C 2009 Phys. Rev. B 79 054503 | [8] | Ambolode L C C, Okazaki K, Horio M, Suzuki H, Liu L, Ideta S, Yoshida T, Mikami T, Kakeshita T, Uchida S, Ono K, Kumigashira H, Hashimoto M, Lu D H, Shen Z X and Fujimori A 2015 Phys. Rev. B 92 035104 | [9] | Wu X X, Qin S S, Liang Y, Fan H and Hu J P 2016 Phys. Rev. B 93 115129 | [10] | Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2009 J. Phys. Soc. Jpn. 78 074712 | [11] | Ding Q P, Mohan S, Tsuchiya Y, Taen T, Nakajima Y and Tamegai T 2011 Supercond. Sci. Technol. 24 075025 | [12] | Wu M K, Wang M J and Yeh K W 2013 Sci. Technol. Adv. Mater. 14 014402 | [13] | Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L and Wang N L 2009 Phys. Rev. B 79 140509 | [14] | Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeš K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A and Broholm C 2010 Nat. Mater. 9 718 | [15] | Gawryluk D J, Fink-Finowicki J, Wiśniewski A, Puźniak R, Domukhovski V, Diduszko R, Kozłowski M and Berkowski M 2011 Supercond. Sci. Technol. 24 065011 | [16] | Huang C L, Chou C C, Tseng K F, Huang Y L, Hsu F C, Yeh K W, Wu M K and Yang H D 2009 J. Phys. Soc. Jpn. 78 084710 | [17] | Kantarcı Güler N, Ekicibil A, Özçelik B, Onar K, Yakıncı M E, Okazaki H, Takeya H and Takano Y 2014 J. Supercond. Novel Magn. 27 2691 | [18] | Nakayama K, Sato T, Richard P, Kawahara T, Sekiba Y, Qian T, Chen G F, Luo J L, Wang N L, Ding H and Takahashi T 2010 Phys. Rev. Lett. 105 197001 | [19] | Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X and Fang Z 2015 Phys. Rev. B 92 115119 | [20] | Miao H, Richard P, Tanaka Y, Nakayama K, Qian T, Umezawa K, Sato T, Xu Y M, Shi Y B, Xu N, Wang X P, Zhang P, Yang H B, Xu Z J, Wen J S, Gu G D, Dai X, Hu J P, Takahashi T and Ding H 2012 Phys. Rev. B 85 094506 | [21] | Lubashevsky Y, Lahoud E, Chashka K, Podolsky D and Kanigel A 2012 Nat. Phys. 8 309 | [22] | Zhang P, Richard P, Xu N, Xu Y M, Ma J, Qian T, Fedorov A V, Denlinger J D, Gu G D and Ding H 2014 Appl. Phys. Lett. 105 172601 | [23] | Hanaguri T, Niitaka S, Kuroki K and Takagi H 2010 Science 328 474 | [24] | Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2008 Appl. Phys. Lett. 93 152505 | [25] | Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630 | [26] | Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M and Prassides K 2009 Phys. Rev. B 80 064506 | [27] | Li F S, Ding H, Tang C J, Peng J P, Zhang Q H, Zhang W H, Zhou G Y, Zhang D, Song C L, He K, Ji S H, Chen X, Gu L, Wang L L, Ma X C and Xue Q K 2015 Phys. Rev. B 91 220503 | [28] | Shi X, Han Z Q, Richard P, Wu X X, Peng X L, Qian T, Wang S C, Hu J P, Sun Y J and Ding H 2017 Sci. Bull. 62 503 | [29] | Shi X, Han Z Q, Peng X L, Richard P, Qian T, Wu X X, Qiu M W, Wang S C, Hu J P, Sun Y J and Ding H 2017 Nat. Commun. 8 14988 | [30] | Vegard L 1921 Z. Für Phys. 5 17 | [31] | Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161 | [32] | Stroscio J A, Pierce D T and Dragoset R A 1993 Phys. Rev. Lett. 70 3615 | [33] | Korobtsov V V, Balashev V V and Pisarenko T A 2007 E-J. Surf. Sci. Nanotech. 5 45 | [34] | Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T and Wang S C 2012 Phys. Rev. Lett. 108 037002 | [35] | Ieki E, Nakayama K, Miyata Y, Sato T, Miao H, Xu N, Wang X P, Zhang P, Qian T, Richard P, Xu Z J, Wen J S, Gu G D, Luo H Q, Wen H H, Ding H and Takahashi T 2014 Phys. Rev. B 89 140506 | [36] | Manna S, Kamlapure A, Cornils L, Hänke T, Hedegaard E M J, Bremholm M, Iversen B B, Hofmann P, Wiebe J and Wiesendanger R 2017 Nat. Commun. 8 14074 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|