CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix |
S. Fahad1, M. Ali1**, S. Ahmed1, S. Khan1, S. Alam1, S. Akhtar2 |
1Advanced Electronics Laboratories, International Islamic University Islamabad, Pakistan 2Department of Physics, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan
|
|
Cite this article: |
S. Fahad, M. Ali, S. Ahmed et al 2017 Chin. Phys. Lett. 34 106801 |
|
|
Abstract Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1–5 k$\Omega/\square$. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 $\Omega/\square$ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process annealing on its electrical fabrication.
|
|
Received: 10 April 2017
Published: 27 September 2017
|
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [2] | Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5776 | [3] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | [4] | Dubertret B, Thomas H and Mauricio T 2015 Acc. Chem. Res. 48 1 | [5] | Warner J H, Schaffel F, Rummeli M and Bachmatiuk A 2012 Graphene: Fundamentals and Emergent Applications (Amsterdam: Elsevier) | [6] | Maier F, Riedel M, Mantel B, Ristein J and Ley L 2000 Phys. Rev. Lett. 85 3472 | [7] | Ma X and Zhang H 2013 Nanoscale Res. Lett. 8 440 | [8] | Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I and Kim Y J 2010 Nat. Nanotechnol. 5 574 | [9] | Varykhalov A, Marchenko D, Sánchez-Barriga J, Scholz M R, Verberck B, Trauzettel B, Wehling T O, Carbone C and Rader O 2012 Phys. Rev. X 2 041017 | [10] | Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411 | [11] | Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Lett. 17 17630 | [12] | Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 8 109 | [13] | Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359 | [14] | Matsumoto K 2015 Frontiers of Graphene and Carbon Nanotubes: Devices and Applications (Tokyo: Springer) | [15] | Fang T, Konar A, Xing H and Jena D 2007 Appl. Phys. Lett. 91 092109 | [16] | Dorgan V E, Bae M H and Pop E 2010 Appl. Phys. Lett. 97 082112 | [17] | Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491 | [18] | Kang J, Hwang S, Kim J H, Kim M H, Ryu J, Seo S J, Hong B H, Kim M K and Choi J B 2012 ACS Nano 6 5360 | [19] | Choi J S, Choi H, Kim K C, Jeong H Y, Yu Y J, Kim J T, Kim J S, Shin J W, Cho H and Choi C G 2016 Sci. Rep. 6 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|