Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 017303    DOI: 10.1088/0256-307X/34/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field
Li-Guo Qin1,2, Qin Wang1,2**
1Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003
2Key Lab of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003
Cite this article:   
Li-Guo Qin, Qin Wang 2017 Chin. Phys. Lett. 34 017303
Download: PDF(529KB)   PDF(mobile)(521KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes–Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method, we carry out investigation for both the "good system" and "more realistic system", characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations, we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.
Received: 25 September 2016      Published: 29 December 2016
PACS:  73.21.La (Quantum dots)  
  78.67.Hc (Quantum dots)  
  42.50.-p (Quantum optics)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11274178, 61475197 and 61590932, the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No 15KJA120002, the outstanding Youth Project of Jiangsu Province under Grant No BK20150039, and the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No YX002001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/017303       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/017303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Guo Qin
Qin Wang
[1]Lu Y J, Wang C Y, Kim J et al 2014 Nano Lett. 14 4381
[2]Kwak J I and An Y J 2015 Int. J. Environ. Sci. Technol. 12 1163
[3]Gong S J, Zhou F and Wu H Y 2015 Chin. Phys. Lett. 32 013201
[4]Felle M, Huwer J, Stevenson R M et al 2015 Appl. Phys. Lett. 107 131106
[5]Wang T, Liu H Y and Zhang J J 2016 Chin. Phys. Lett. 33 044207
[6]Si B, Wen J J, Cheng L Y et al 2014 Int. J. Theor. Phys. 53 80
[7]Moreau E, Robert I, Gerard J M et al 2001 Appl. Phys. Lett. 79 2865
[8]Reitzenstein S, Bockler C, Bazhenov A et al 2008 Opt. Express 16 4848
[9]Yoshie T, Scherer A, Hendrickson J et al 2004 Nature 432 200
[10]Khitrova G, Gibbs H M, Kira M et al 2006 Nat. Phys. 2 81
[11]Laussy F P, del Valle E and Tejedor C 2008 Phys. Rev. Lett. 101 083601
[12]Lin C, Gong K, Kelley D F et al 2015 ACS Nano 9 8131
[13]Zeng C, Ma Y J, Zhang Y et al 2015 Opt. Express 23 22250
[14]Roy-Choudhury K and Hughes S 2015 Phys. Rev. B 92 205406
[15]Chen X and Mi X W 2011 Acta Phys. Sin. 60 044202
[16]Khasraghi A M, Shojaei S, Vala A S and Kalafi M 2013 Superlattice. Microst. 55 98
[17]Laussy F P, del Valle E and Tejedor C 2009 Phys. Rev. B 79 235325
[18]del Valle E, Laussy F P and Tejedor C 2009 Phys. Rev. B 79 235326
[19]Laussy F P, Laucht A, del Valle E et al 2011 Phys. Rev. B 84 195313
[20]Tian L and Carmichael H J 1992 Quantum Opt. 4 131
[21]Yao P J, Pathak P K, Illes E and Hughes S 2010 Phys. Rev. B 81 033309
[22]Tawara T, Kamada H, Tanabe T et al 2010 Opt. Express 18 2719
[23]Benson O and Yamamoto Y 1999 Phys. Rev. A 59 4756
[24]Carmichael H J 1999 Statistical Methods in Quantum Optics (Berlin: Springer-Verlag)
[25]Tsukanov A V and Kateev I Y 2014 Russ. Micro. 43 315
[26]Nomura M, Kumagai N, Iwamoto S et al 2009 Opt. Express 17 15975
[27]Shan G C, Yin Z Q, Shek C H and Huang W 2014 Front. Phys. 9 170
[28]Laussy F P and del Valle E 2010 J. Phys.: Conf. Ser. 210 012018
[29]Guan H, Yao P J, Lu Y H et al 2015 J. Opt. 17 015001
[30]Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 017303
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 017303
[3] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 017303
[4] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 017303
[5] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 017303
[6] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 017303
[7] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 017303
[8] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 017303
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 017303
[10] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 017303
[11] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 017303
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 017303
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 017303
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 017303
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 017303
Viewed
Full text


Abstract