Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 015201    DOI: 10.1088/0256-307X/34/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics
Zhen-Wei Xia1**, Chun-Hua Li2, Dan-Dan Zou3, Wei-Hong Yang1
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Department of Information Engineering, Hefei University of Technology, Hefei 230009
3School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013
Cite this article:   
Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou et al  2017 Chin. Phys. Lett. 34 015201
Download: PDF(504KB)   PDF(mobile)(499KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.
Received: 11 September 2016      Published: 29 December 2016
PACS:  52.35.Ra (Plasma turbulence)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  47.27.Gs (Isotropic turbulence; homogeneous turbulence)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11375190 and 11547137.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/015201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/015201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhen-Wei Xia
Chun-Hua Li
Dan-Dan Zou
Wei-Hong Yang
[1]Frisch U 1995 Turbulence: The Legacy of A. N. Kolmogorov (Cambridge: Cambridge University Press)
[2]Biskamp D 2003 Magnetohydrodyanmics Turbulence (Cambridge: Cambridge University Press)
[3]Verma M K 2004 Phys. Rep. 401 229
[4]Lee T D 1952 Q. Appl. Math. 10 69
[5]Kraichnan R H 1967 Phys. Fluids 10 1417
[6]Kraichnan R H 1973 J. Fluid Mech. 59 745
[7]Frisch U et al 1975 J. Fluid Mech. 68 769
[8]Fyfe D and Montgomery D 1976 J. Plasma Phys. 16 181
[9]Hasegawa A and Mima K 1978 Phys. Fluids 21 87
[10]Fyfe D and Montgomery D 1979 Phys. Fluids 22 246
[11]Stribling T and Matthaeus W H 1990 Phys. Fluids B 2 1979
[12]Abdalla T M et al 2003 Phys. Plasmas 10 3077
[13]Servidio S et al 2008 Phys. Plasmas 15 042314
[14]Shebalin J V 2013 Phys. Plasmas 20 102305
[15]Qaisrani M H et al 2015 Phys. Plasmas 22 092303
[16]Kraichnan R H and Chen S 1989 Physica D 37 160
[17]Pouquet A et al 1976 J. Fluid Mech. 77 321
[18]Moffatt K 1978 Magnetic Field Generation in Electrically Conducting Fluids (Cambridge: Cambridge University Press)
[19]Krause F K and Rädler K H 1980 Mean Field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon Press)
[20]Krishan V and Mahajan S M 2005 Nonlinear Proc. Geophys. 12 75
[21]Huba J D and Rudakov L I 2004 Phys. Rev. Lett. 93 175003
[22]Mininni P D et al 2002 Astrophys. J. 567 L81
[23]Mininni P D et al 2007 J. Plasma Phys. 73 377
[24]Huba J D 2003 Hall Magnetohydrodynamics-A Tutorial (Berlin: Springer)
[25]Witalis E A 1986 IEEE Trans. Plasma Sci. PS-14 842
[26]Mininni P D et al 2003 Astrophys. J. 587 472
[27]Constantin P and Majda A 1988 Commun. Math. Phys. 115 435
[28]Waleffe F 1992 Phys. Fluids A 4 350
[29]Chen Q N et al 2003 Phys. Fluids 15 361
[30]Galtier S and Bhattacharjee A 2003 Phys. Plasmas 10 3065
[31]Galtier S 2006 J. Plasma Phys. 72 721
[32]Biferale L et al 2012 Phys. Rev. Lett. 108 164501
[33]Zhu J Z et al 2014 J. Fluid Mech. 739 479
[34]Kraichnan R H and Montgomery D 1980 Rep. Prog. Phys. 43 547
[35]Ghosh S and Goldstein M L 1997 J. Plasma Phys. 57 129
[36]Stribling T et al 1994 J. Geophys. Res. 99 2567
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 015201
[2] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 015201
[3] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 015201
[4] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 015201
[5] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 015201
[6] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 015201
[7] A. A. Azooz,Y. A. Al-Jawaady,Z. T. Ali. Pressure and Discharge-Voltage Dependence of Self-Sustaining Pulses in Air-Glow Discharge[J]. Chin. Phys. Lett., 2012, 29(5): 015201
[8] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 015201
[9] XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas[J]. Chin. Phys. Lett., 2010, 27(4): 015201
[10] DONG Li-Fang, FAN Wei-Li, WANG Hui-Juan, ZHANG Qing-Li, WANG Long. Nonlinear Interaction and Coherent Structure in Tokamak Plasma Turbulence[J]. Chin. Phys. Lett., 2006, 23(11): 015201
[11] LU Rong-Hua, PAN Ge-Sheng, WANG Zhi-Jiang, WEN Yi-Zhi, LIU Wan-Dong, WAN Shu-De, YU Chang-Xuan, WANG Jun, XIAO De-Long, XU Min. Effects of Dual-Electrode Biasing on Er in a Toroidal Plasma[J]. Chin. Phys. Lett., 2005, 22(6): 015201
[12] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 015201
[13] PANG Jin-Qiao, WU Ze-Qing, YAN Jun, HAN Guo-Xing. Theoretical Calculations of Opacity for Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 015201
[14] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. Naturally Occurring Velocity Shear Layer at the Plasma Edge of HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(1): 015201
[15] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. First Measurement of the Magnetic Turbulence Induced Reynolds Stress in a Tokamak[J]. Chin. Phys. Lett., 2003, 20(12): 015201
Viewed
Full text


Abstract