Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 013701    DOI: 10.1088/0256-307X/34/1/013701
ATOMIC AND MOLECULAR PHYSICS |
An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions
Kun Zhou1,2†, Jin-Ming Cui1,2†, Yun-Feng Huang1,2**, Zhao Wang1,2, Zhong-Hua Qian1,2, Qi-Ming Wu1,2, Jian Wang1,2, Ran He1,2, Wei-Min Lv1,2, Chang-Kang Hu1,2, Yong-Jian Han1,2**, Chuan-Feng Li1,2**, Guang-Can Guo1,2
1Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Kun Zhou, Jin-Ming Cui, Yun-Feng Huang et al  2017 Chin. Phys. Lett. 34 013701
Download: PDF(590KB)   PDF(mobile)(584KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a fiber Fabry–Pérot cavity in the ultraviolet range, which covers the florescence wavelength for the $^{2}$P$_{1/2}$ to $^{2}$S$_{1/2}$ transition of Yb$^{+}$ and is designed in the bad cavity limit for florescence collection. Benefiting from both the small cavity mode volume and the large atom dipole, a cavity with moderate finesse and high transmission still supports a good cooperativity, which is made and tested in experiment. Based on the measured experimental parameters, simulation performed on the cavity and ion shows a Purcell factor better than 2.5 and a single-mode fiber collection efficiency over 10%. This technology can support ultra-bright single photon sources based on trapped ions and can provide the possibility to link remote atoms as a quantum network.
Received: 13 September 2016      Published: 29 December 2016
PACS:  37.30.+i (Atoms, molecules, andions incavities)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.81.Wg (Other fiber-optical devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11274289, 11325419, 11474267, 11404319, 61327901, 61225025 and 11474268, the Fundamental Research Funds for the Central Universities under Grant Nos WK2470000018 and WK2030020019, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01030300, the National Youth Top Talent Support Program of National High-level Personnel of Special Support Program under Grant No BB2470000005, and the Anhui Provincial Natural Science Foundation under Grant No 1608085QA22.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/013701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/013701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Zhou
Jin-Ming Cui
Yun-Feng Huang
Zhao Wang
Zhong-Hua Qian
Qi-Ming Wu
Jian Wang
Ran He
Wei-Min Lv
Chang-Kang Hu
Yong-Jian Han
Chuan-Feng Li
Guang-Can Guo
[1]Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W and Reichel J 2010 New J. Phys. 12 065038
[2]Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
[3]Kaupp H, Deutsch C, Chang H C, Reichel J, Hänsch T W and Hunger D 2013 Phys. Rev. A 88 053812
[4]Petrak B, Djeu N and Muller A 2014 Phys. Rev. A 89 023811
[5]Brandstätter B et al 2013 Rev. Sci. Instrum. 84 123104
[6]Steiner M, Meyer H M, Reichel J and Köhl M 2014 Phys. Rev. Lett. 113 263003
[7]Meyer H M et al 2015 Phys. Rev. Lett. 114 123001
[8]Blatt R and Roos C F 2012 Nat. Phys. 8 277
[9]Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[10]Häffner H, Roos C F and Blatt R 2008 Phys. Rep. 469 155
[11]Kimble H J 2008 Nature 453 1023
[12]Russo C et al 2009 Appl. Phys. B 95 205
[13]Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[14]Moehring D L et al 2007 Nature 449 68
[15]Monroe C and Kim J 2013 Science 339 1164
[16]Monroe C et al 2014 Phys. Rev. A 89 022317
[17]Maiwald R et al 2009 Nat. Phys. 5 551
[18]Maiwald R 2012 Phys. Rev. A 86 043431
[19]Takahashi et al 2013 New J. Phys. 15 053011
[20]Jechow A, Streed E W, Norton B G, Petrasiunas M J and Kielpinski D 2011 Opt. Lett. 36 1371
[21]Hucul D et al 2014 Nat. Phys. 11 37
[22]Sterk J D, Luo L, Manning T A, Maunz P and Monroe C 2012 Phys. Rev. A 85 062308
[23]Uphoff M, Brekenfeld M, Rempe G and Ritter S 2015 New J. Phys. 17 013053
[24]Takahashi H, Morphew J, Oručević F, Noguchi A, Kassa E and Keller M 2014 Opt. Express 22 31317
[25]Benedikter J, Hümmer T, Mader M, Schlederer B, Reichel J, Hänsch T W and Hunger D 2015 New J. Phys. 17 053051
[26]Steiner M, Meyer H M, Deutsch C, Reichel J and Köhl M 2013 Phys. Rev. Lett. 110 043003
Related articles from Frontiers Journals
[1] Ming Lu, Didi Luo, Feng Pan, Chunlong Li, Shichun Huang, Ziqin Yang, Andong Wu, Qingwei Chu, Tongtong Zhu, Shuai Wu, Teng Tan, and Hao Guo. Development and Performance of the First Nb$_3$Sn Thin-Film Cavity via Bronze Process[J]. Chin. Phys. Lett., 2022, 39(11): 013701
[2] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 013701
[3] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 013701
[4] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 013701
[5] ZHUANG Wei, ZHANG Tong-Gang, CHEN Jing-Biao. An Active Ion Optical Clock[J]. Chin. Phys. Lett., 2014, 31(09): 013701
[6] ZHANG Miao, JIA Huan-Yu, WEI Lian-Fu, ** . Entangling a Series of Trapped Ions by Moving Cavity Bus[J]. Chin. Phys. Lett., 2011, 28(6): 013701
Viewed
Full text


Abstract