Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 013201    DOI: 10.1088/0256-307X/34/1/013201
ATOMIC AND MOLECULAR PHYSICS |
Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach
Shao-Yang Dai1, Kun-Qian Li1, Yue-Yang Zhai1**, Wei Xia2, Qing Wang1, Wei Xiong1, Xiang-Hui Qi1, Xu-Zong Chen1**
1Institute of Quantum Electronics, School of Electronics Engineering and Computer Sciences, Peking University, Beijing 100871
2Jiangsu Key Laboratory on Opto-electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046
Cite this article:   
Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai et al  2017 Chin. Phys. Lett. 34 013201
Download: PDF(1320KB)   PDF(mobile)(1308KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The optical frequency comb has been widely used in precision measurement. In this study, a multi-peak fitting approach is first proposed to fit the two-photon transition spectrum which overlaps with the neighboring transition in $^{87}$Rb. The multi-peak fitting approach is used to eliminate the frequency shift affected by the neighboring transition. With locking the carrier envelope offset frequency at 1/4 repetition frequency, the transition frequency is measured to be 770569132739.9$\pm$5.8 kHz, which agrees well with the previous result recommended by Comité International des Poids et Mesures.
Received: 24 August 2016      Published: 29 December 2016
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.30.Jc (Visible and ultraviolet spectra)  
  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91336103, 10934010 and 61078026.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/013201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/013201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shao-Yang Dai
Kun-Qian Li
Yue-Yang Zhai
Wei Xia
Qing Wang
Wei Xiong
Xiang-Hui Qi
Xu-Zong Chen
[1]Bernard J E, Madej A A, Siemsen J K, Marmet L, Latrasse C, Touahri D, Poulin M, Allard M and Têtu M 2000 Opt. Commun. 173 357
[2]Jones D J, Diddams S A, Ranka, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[3]Xia W and Chen X Z 2016 Meas. Sci. Technol. 27 041001
[4]Pandey K, Kumar P V K, Suryanarayana M V and Natarajan V 2008 Opt. Lett. 33 1675
[5]Marian A, Stowe M C, Felinto D and Ye J 2005 Phys. Rev. Lett. 95 023001
[6]Chui H C, Ko M S, Liu Y W, Shy J T, Peng J L and Ahn H 2005 Opt. Lett. 30 842
[7]Gerginov V, Tanner C E, Diddams S A, Bartels A and Hollberg L 2005 Opt. Lett. 30 1734
[8]Wolf A L, Berg S A, Ubachs W and Eikema K S E 2009 Phys. Rev. Lett. 102 223901
[9]Marian A, Stowe M C, Lawall J R, Felinto D and Ye J 2004 Science 306 2063
[10]Barmes I, Witte S and Eikema K S E 2013 Phys. Rev. Lett. 111 023007
[11]Dai S Y, Xia W, Zhang Y, Zhao J Y, Zhou D W, Wang Q, Yu Q, Li K Q, Qi X H and Chen X Z 2016 Opt. Commun. 378 35
[12]Zhang S Y, Wu J T, Zhang Y L, Leng J X, Yang W P, Zhang Z G and Zhao J Y 2015 Sci. Rep. 5 15114
[13]Dudovich N, Dayan B, Gallagher Faeder S M and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[14]Wu J T, Hou D, Qin Z Y, Zhang Z G and Zhao J Y 2014 Phys. Rev. A 89 041402
[15]Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201
[16]Lee W K and Moon H S 2015 Phys. Rev. A 92 012501
[17]Hou D, Wu J T, Zhang S Y, Ren Q S, Zhang Z G and Zhao J Y 2014 Appl. Phys. Lett. 104 111104
[18]Cao S K, Fan P R, Zhang Y C, Wang L R, Xiao L T and Jia S T 2016 Chin. Phys. Lett. 33 023201
[19]Jin L, Zhang Y C, Xiang S S, Wang L R, Ma J, Zhao Y T, Xiao L T and Jia S T 2013 Chin. Phys. Lett. 30 103201
[20]Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H and Wei Z Y 2015 Chin. Phys. B 24 024213
[21]Liu W L, Xu R D, Wu J Z, Yang J X, Lukashov S S, Sovkov V B, Dai X C, Ma1 J, Xiao L T and Jia S T 2015 J. Chem. Phys. 143 124307
[22]Ma J, Wu J Z, Chen G, Fan Q C, Feng H, Dai X C, Sun W G, Xiao L T and Jia S T 2013 J. Phys. Chem. Lett. 4 3612
[23]Hu C Y, Liu W L, Xu R D, Wu J Z, Ma J, Xiao L T and Jia S T 2015 Acta Phys. Sin. 64 143302
[24]Inaba H, Daimon Y, Hong F L, Onae A, Minoshima K, Schibli T R, Matsumoto H, Hirano M, Okuno T, Onishi M and Nakazawa M 2006 Opt. Express 14 5223
[25]Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F and Jørgensen C G 2004 Opt. Lett. 29 250
[26]Bjorkholm J and Liao P 1976 Phys. Rev. A 14 751
[27]Stalnaker J E, Mbele V, Gerginov V, Fortier T M, Diddams S A, Hollberg L and Tanner C E 2010 Phys. Rev. A 81 043840
[28]Baklanov Y V and Chebotayev V P 1977 Appl. Phys. 12 97
[29]Fendel P, Bergeson S D, Udem T and Hänsch T W 2007 Opt. Lett. 32 701
[30]Moutzouris K, Sotier F, Adler F and Leitenstorfer A 2006 Opt. Express 14 1905
[31]Okubo S, Onae A, Hosaka K, Sera H, Inaba H and Hong F L 2015 Appl. Phys. Express 8 112402
[32]Nez F, Biraben F, Felder R and Millerioux Y 1993 Opt. Commun. 102 432
[33]Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q. 23 309
[34]Poulin M, Latrasse C, Touahri D and Têtu M 2002 Opt. Commun. 207 233
[35]Farley J W and Wing W H 1981 Phys. Rev. A 23 2397
[36]Felder R, Touahri D, Acef O, Hilico L, Zondy J J, Clairon A, Beauvoir B D, Biraben F, Julien L, Nez F and Millerioux Y 1995 Proc. SPIE 2378 52
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 013201
[2] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 013201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 013201
[4] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 013201
[5] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 013201
[6] Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang, Qian Liu, Qiu-Zhi Qu, De-Sheng Lü, Liang Liu. State Preparation in a Cold Atom Clock by Optical Pumping[J]. Chin. Phys. Lett., 2017, 34(7): 013201
[7] Yi-Chi Zhang, Peng-Rui Fan, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control[J]. Chin. Phys. Lett., 2016, 33(11): 013201
[8] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 013201
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 013201
[10] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 013201
[11] Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser[J]. Chin. Phys. Lett., 2016, 33(02): 013201
[12] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 013201
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 013201
[14] JIN Li, ZHANG Yi-Chi, XIANG Shao-Shan, WANG Li-Rong, MA Jie, ZHAO Yan-Ting, XIAO Lian-Tuan, JIA Suo-Tang. Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb[J]. Chin. Phys. Lett., 2013, 30(10): 013201
[15] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 013201
Viewed
Full text


Abstract