Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 127402    DOI: 10.1088/0256-307X/33/12/127402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy
Ming-Qiang Ren1,2, Ya-Jun Yan1,2, Tong Zhang1,2**, Dong-Lai Feng1,2**
1State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang et al  2016 Chin. Phys. Lett. 33 127402
Download: PDF(3739KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212) and YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) along their $c$-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended flat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.

Received: 08 November 2016      Published: 29 December 2016
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  74.72.-h (Cuprate superconductors)  
Fund:

Supported by the National Natural Science Foundation of China, and the National Key Research and Development Program of China under Grant No 2016YFA0300203.

TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/127402       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/127402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Qiang Ren
Ya-Jun Yan
Tong Zhang
Dong-Lai Feng
[1] Bednorz J G and Mueller K A 1986 Z. Phys. B 64 189
[2] Uchida S I 2015 High Temperature Superconductivity, the Road to High Critical Temperature (New York: Springer)
[3] Massidda S, Yu J and Freeman A J 1988 Physica C 152 251
[4] Pickett W E 1989 Rev. Mod. Phys. 61 433
[5] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[6] Shen Z X et al 1993 Phys. Rev. Lett. 70 1553
[7] Renner Ch and Fischer O 1995 Phys. Rev. B 51 9208
[8] Pan S H et al 2000 Nature 403 746
[9] Fischer O et al 2007 Rev. Mod. Phys. 79 353
[10] Zhong Y et al 2016 Chin. Sci. Bull. 61 1239
[11] Lv Y F et al 2015 Phys. Rev. Lett. 115 237002
[12] Lv Y F et al 2016 Phys. Rev. B 93 140504
[13] Misra S et al 2002 Phys. Rev. Lett. 89 087002
[14] Hasegawa T and Kitazawa K 1990 Jpn. J. Appl. Phys. 29 L434
[15] Suzuki K et al 1999 Phys. Rev. Lett. 83 616
[16] Wolf E L 1989 Principles of Electron Tunneling Spectroscopy (New York: Oxford University Press)
[17] Nieminen J et al 2009 Phys. Rev. Lett. 102 037001
[18] Sakai S et al 2013 Phys. Rev. Lett. 111 107001
[19] Hamidian M H et al 2016 Nature 532 343
[20] Verret S, Charlebois M, Sénéchal D and Tremblay A M S 2016 arXiv:1610.01109
[21] Yan Y J et al 2016 Phys. Rev. B 94 134502
[22] Hardy W N et al 1993 Phys. Rev. Lett. 70 3999
[23] Hu C R 1994 Phys. Rev. Lett. 72 1526
[24] Yeh N C et al 2001 Phys. Rev. Lett. 87 087003
[25] Tsuei C C et al 1994 Phys. Rev. Lett. 73 593
[26] Wollman D A et al 1993 Phys. Rev. Lett. 71 2134
[27] Khasanov R et al 2004 Phys. Rev. Lett. 92 057602
[28] Lanzara A et al 2001 Nature 412 510
[29] Chakravarty S et al 1993 Science 261 337
Related articles from Frontiers Journals
[1] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 127402
[2] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 127402
[3] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 127402
[4] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 127402
[5] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 127402
[6] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 127402
[7] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 127402
[8] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 127402
[9] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 127402
[10] GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong. Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers[J]. Chin. Phys. Lett., 2015, 32(06): 127402
[11] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 127402
[12] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 127402
[13] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 127402
[14] WANG Da, LU Hong-Yan, WANG Qiang-Hua. The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor[J]. Chin. Phys. Lett., 2013, 30(7): 127402
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 127402
Viewed
Full text


Abstract