Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 127301    DOI: 10.1088/0256-307X/33/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Topological Phase in Non-centrosymmetric Material NaSnBi
Xia Dai1, Cong-Cong Le1, Xian-Xin Wu1, Sheng-Shan Qin1, Zhi-Ping Lin1, Jiang-Ping Hu1,2**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
Xia Dai, Cong-Cong Le, Xian-Xin Wu et al  2016 Chin. Phys. Lett. 33 127301
Download: PDF(4214KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We predict that a non-centrosymmetric material NaSnBi locates in a three-dimensional non-trivial topological phase under ambient pressure based on first-principle calculations. By deriving the effective model around the ${\it \Gamma}$ point, we find that the topological phase transition is driven by a Rashba spin-orbital coupling through an odd number of pairs of band touch due to a small anisotropic gap caused by quintic dispersion terms. In contrast to conventional topological insulators, the spin texture of the surface Dirac cone is right-handed and the surface states are strikingly different for different surface terminations.

Received: 07 November 2016      Published: 29 December 2016
PACS:  73.43.-f (Quantum Hall effects)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund:

Supported by the National Basic Research Program of China under Grant No 2015CB921300, the National Natural Science Foundation of China under Grant No 11334012, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB07000000.

TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/127301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xia Dai
Cong-Cong Le
Xian-Xin Wu
Sheng-Shan Qin
Zhi-Ping Lin
Jiang-Ping Hu
[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[2] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[3] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[4] Moore J E 2010 Nature 464 194
[5] Konig M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[6] Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[7] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[8] Spanton E M, Nowack K C, Du L J, Sullivan G, Du R R and Moler K A 2014 Phys. Rev. Lett. 113 026804
[9] Murakami S 2006 Phys. Rev. Lett. 97 236805
[10] Zhou J J, Feng W, Liu C C, Guan S and Yao Y 2014 Nano Lett. 14 4767
[11] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[12] Teo J C Y, Fu L and Kane C L 2008 Phys. Rev. B 78 045426
[13] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[14] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[15] Wray L A, Xu S Y, Xia Y, Hsieh D, Fedorov A V, Hor Y S, Cava R J, Bansil A, Lin H and Hasan M Z 2011 Nat. Phys. 7 32
[16] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
[17] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[18] Yan B H, Liu C X, Zhang H J, Yam C Y, Qi X L, Frauenheim T and Zhang S C 2010 Europhys. Lett. 90 37002
[19] Feng W, Xiao D, Ding J and Yao Y 2011 Phys. Rev. Lett. 106 016402
[20] Wu X X, Qin S S, Liang Y, Fan H and Hu J P 2016 Phys. Rev. B 93 115129
[21] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[22] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[23] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[24] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S, Zheng M H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[25] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[26] Jason A 2012 Rep. Prog. Phys. 75 076501
[27] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[28] Linder J, Tanaka Y, Yokoyama T, Sudbo A and Nagaosa N 2010 Phys. Rev. Lett. 104 067001
[29] Bahramy M S, Yang B J, Arita R and Nagaosa N 2012 Nat. Commun. 3 679
[30] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[32] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
[36] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[37] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[38] Lin Z P, Hu J P et al (in preparation)
[39] Soluyanov A A and Vanderbilt D 2011 Phys. Rev. B 83 235401
[40] Sancho L M P, Sancho L J M and Rubio J 1984 J. Phys. F 14 1205
[41] Sancho L M P, Sancho L J M and Rubio J 1985 J. Phys. F 15 851
[42] Liu J P and Vanderbilt D 2014 Phys. Rev. B 90 155316
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 127301
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 127301
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 127301
[4] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 127301
[5] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 127301
[6] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 127301
[7] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 127301
[8] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 127301
[9] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 127301
[10] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 127301
[11] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 127301
[12] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 127301
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 127301
[14] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 127301
[15] SUN Liang, WAN Shao-Long. Chiral Current in the Lattice Model of Weyl Semimetal[J]. Chin. Phys. Lett., 2015, 32(5): 127301
Viewed
Full text


Abstract