Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 126501    DOI: 10.1088/0256-307X/33/12/126501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Temperature-Dependent Debye Temperature and Specific Capacity of Graphene
Xiao-Xia Ren1, Wei Kang2, Zheng-Fu Cheng1, Rui-Lun Zheng1**
1College of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160
2College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065
Cite this article:   
Xiao-Xia Ren, Wei Kang, Zheng-Fu Cheng et al  2016 Chin. Phys. Lett. 33 126501
Download: PDF(412KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the temperature are obtained. The influence of anharmonic vibration on these thermal physical properties is also investigated. Some theoretical results are given. If only the harmonic approximation is considered, the Debye temperature of the graphene is unrelated to the temperature. If the anharmonic terms are considered, it increases slowly with the increasing temperature. The molar heat capacity of the graphene increases nonlinearly with the increasing temperature. The mean free path of phonons and the thermal conductivity of the graphene decrease nonlinearly with the increasing temperature. The relative changes of the Debye temperature, the specific heat capacity and the thermal conductivity caused by the anharmonic terms increase with the increasing temperature. The anharmonic effect of atomic vibration becomes more significant under higher temperature.
Received: 18 September 2016      Published: 29 December 2016
PACS:  65.40.Ba (Heat capacity)  
  65.40.G- (Other thermodynamical quantities)  
  65.80.Ck (Thermal properties of graphene)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11574253, the Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant Nos KJ1601111 and KJ1601118, and the Basic and Frontier Research Projects of Chongqing under Grant No cstc2015jcyjA40054.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/126501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/126501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Xia Ren
Wei Kang
Zheng-Fu Cheng
Rui-Lun Zheng
[1]Ye Z Q et al 2014 Acta Phys. Sin. 63 154704 (in Chinese)
[2]Davydov S Y et al 2011 Phys. Stat. Sol. 53 608 (in Russian)
[3]Bao W Z et al 2009 Nat. Nanotechnol. 4 562
[4]Mounet N et al 2005 Phys. Rev. B 71 205214
[5]Zakharchenko K V et al 2009 Phys. Rev. Lett. 102 046808
[6]Jiang J W et al 2009 Phys. Rev. B 80 205429
[7]Pozzo M et al 2011 Phys. Rev. Lett. 106 135501
[8]Davydov S Y 2011 Tech. Phys. Lett. 37 42 (in Russian)
[9]Cheng Z F et al 2016 Chin. Phys. Lett. 33 046501
[10]Cheng Z F et al 2016 Acta Phys. Sin. 65 104701 (in Chinese)
[11]Balandin A et al 2008 Nano Lett. 8 902
[12]Nika D L et al 2009 Phys. Rev. B 79 155413
[13]Ouyang T et al 2009 Europhys. Lett. 88 28002
[14]Saito K et al A 2007 Phys. Rev. B 76 115409
[15]Bagri A et al 2011 Nano Lett. 11 3917
[16]Lindsay L et al 2010 Phys. Rev. B 82 115427
[17]Kin C F et al 2013 Phys. Rev. X 3 041008
[18]Xia M G et al 2011 Eur. Phys. J. B 84 385
[19]Luo X H et al 2016 Physica B 491 51
[20]Yi K S et al 2008 Physica E 40 1715
[21]Xia M G 2011 Phys. Lett. A 375 3726
[22]Politano A et al 2011 Phys. Rev. B 84 035450
[23]Davydov S Y et al 2012 Phys. Solid State 54 875
[24]Suen X D et al 2013 J. Chin. Microsc. Soc. 32 206 (in Chinese)
[25]Davydov S Y et al 1996 Phys. Semicond. Tech. 30 968
[26]Zheng R L et al 1996 Solid Theory and Application (Chongqing: Southwest Normal University Press) p 267 (in Chinese)
[27]Shen C F 2005 Fundamentals of Solid State Physics (Beijing: Chemical Industry Press) p 245 (in Chinese)
[28]Likanoerrov S P et al 1985 Theory of Crystal Elasticity and Deformation (Moscow: Science Press) p 21 (in Russian)
[29]Ma F et al 2012 Appl. Phys. Lett. 101 111904
[30]Deng L et al 2014 Appl. Phys. Lett. 105 031904
[31]Ye Z Q et al 2014 Carbon 66 567
[32]Ye Z Q et al 2015 Carbon 93 915
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 126501
[2] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 126501
[3] Yu-Ping Cang, Shuai-Bin Lian, Hui-Ming Yang, Dong Chen. Predicting Physical Properties of Tetragonal, Monoclinic and Orthorhombic $M_{3}$N$_{4}$ ($M$=C, Si, Sn) Polymorphs via First-Principles Calculations[J]. Chin. Phys. Lett., 2016, 33(06): 126501
[4] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 126501
[5] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 126501
[6] LIU Xian-Kun, TANG Bin. The Structure and Elastic and Thermodynamic Properties of Cubic-NbH2 under High Pressures from First-Principles Calculations[J]. Chin. Phys. Lett., 2013, 30(6): 126501
[7] KE Hai-Bo,ZHAO Zuo-Feng,WEN Ping**,WANG Wei-Hua. Specific Heat in a Typical Metallic Glass Former[J]. Chin. Phys. Lett., 2012, 29(4): 126501
[8] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 126501
[9] XU Guo-Liang, CHEN Jing-Dong, XIA Yao-Zheng, LIU Xue-Feng, LIU Yu-Fang, ZHANG Xian-Zhou. First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride[J]. Chin. Phys. Lett., 2009, 26(5): 126501
[10] MU Gang, ZHU Xi-Yu, FANG Lei, SHAN Lei, REN Cong, WEN Hai-Hu. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements[J]. Chin. Phys. Lett., 2008, 25(6): 126501
[11] CUI Guang-Lei, GU Min, YU Yao, XU Xi-Bin, WANG Li-Hang, CHENXiao, FENG Duan, TANG Tong Bor. Specific Heat of Rhombohedral Polymeric C60 in Temperature Range 300--2K[J]. Chin. Phys. Lett., 2008, 25(2): 126501
[12] GUO Ming-Xiu, LI Jin-Dong, FU Wen-Qiang, SHI Xiang-Chun, HU Qi-Quan, CHEN Wei-Biao. A Kilowatt Diode-Pumped Solid-State Heat-Capacity Double-Slab Laser[J]. Chin. Phys. Lett., 2006, 23(9): 126501
[13] FAN Zhen-Jun, JING Xiu-Nian, ZHANG Dian-Lin. Compositional Dependence of Electronic Specific Heat in AlCuCo Decagonal Quasicrystals: Evidence for the Hume--Rothery Mechanism of Phase Formation[J]. Chin. Phys. Lett., 2005, 22(7): 126501
Viewed
Full text


Abstract