Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 112501    DOI: 10.1088/0256-307X/33/11/112501
NUCLEAR PHYSICS |
Deconfinement Phase Transition with External Magnetic Field in the Friedberg–Lee Model
Shi-Jun Mao**
School of Science, Xian Jiaotong University, Xi'an 710049
Cite this article:   
Shi-Jun Mao 2016 Chin. Phys. Lett. 33 112501
Download: PDF(513KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The deconfinement phase transition with external magnetic field is investigated in the Friedberg–Lee model. We expand the potential around the two local minima of the first-order deconfinement phase transition and extract the ground state of the system in the frame of functional renormalization group. By solving the flow equations we find that the magnetic field displays a catalysis effect and it becomes more difficult to break through the confinement.
Received: 08 June 2016      Published: 28 November 2016
PACS:  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
  64.60.ae (Renormalization-group theory)  
  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11405122, and the China Postdoctoral Science Foundation under Grant No 2014M550483.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/112501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/112501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shi-Jun Mao
[1]Rafelski J and Muller B 1976 Phys. Rev. Lett. 36 517
[2]Kharzeev D E, McLerran L D and Warringa H J 2008 Nucl. Phys. A 803 227
[3]Skokov V, Illarionov A Y and Toneev T 2009 Int. J. Mod. Phys. A 24 5925
[4]Deng W T and Huang X G 2012 Phys. Rev. C 85 044907
[5]Tuchin K 2013 Adv. High Energy Phys. 2013 490495
[6]Gatto R and Ruggieri M 2013 Lect. Notes Phys. 871 87
[7]Shovkovy I A 2013 Lect. Notes Phys. 871 13
[8]D'Elia M 2013 Lect. Notes Phys. 871 181
[9]Bornyakov V G, Buividovich P V, Cundy N, Kochetkov O A and Schaefer A 2014 Phys. Rev. D 90 034501
[10]Endrodi G 2015 J. High Energy Phys. 1507 173
[11]Agasian N O and Fedorov S M 2008 Phys. Lett. B 663 445
[12]Fraga E S amd Palhares L F 2012 Phys. Rev. D 86 016008
[13]Mizher A J, Chernodub M N and Fraga E S 2010 Phys. Rev. D 82 105016
[14]Gatto R and Ruggieri M 2010 Phys. Rev. D 82 054027
[15]Ayala A, Dominguez C A, Hernandez L A, Loewe M, Rojas J C and Villavicencio C 2015 Phys. Rev. D 92 016006
[16]Ferreira M, Costa P, Menezes D P, Providência C and Scoccola N N 2014 Phys. Rev. D 89 016002
[17]Andersen J O and Cruz A A 2013 Phys. Rev. D 88 025016
[18]Alfonso B B 2013 J. High Energy Phys. 1311 168
[19]Fraga E S 2013 Lect. Notes Phys. 871 121
[20]Andersen J O, Naylor W R and Tranberg A 2014 J. High Energy Phys. 1404 187
[21]Ferreira M, Costa P and Providência C 2014 Phys. Rev. D 89 036006
[22]Ferreira M, Costa P, Lourenco O, Frederico T and Providência C 2014 Phys. Rev. D 89 116011
[23]Fraga E S, Noronha J and Palhares L F 2013 Phys. Rev. D 87 114014
[24]Mamo K A 2015 J. High Energy Phys. 1505 121
[25]Dudal D, Granado D R and Mertens T G 2016 Phys. Rev. D 93 125004
[26]Kashiwa K 2011 Phys. Rev. D 83 117901
[27]Gatto R and Ruggieri M 2011 Phys. Rev. D 83 034016
[28]Friedberg R and Lee T D 1977 Phys. Rev. D 15 1694
Friedberg R and Lee T D 1977 Phys. Rev. D 16 1096
Friedberg R and Lee T D 1978 Phys. Rev. D 18 2623
[29]Goldflam R and Wilets L 1982 Phys. Rev. D 25 1951
[30]Wilets L, Birse M C, L?beck G and Henley E M 1985 Nucl. Phys. A 434 129
[31]Lee T D and Pang Y 1992 Phys. Rep. 221 251
[32]Birse M C 1990 Prog. Part. Nucl. Phys. 25 1
[33]Li M, Birse M C and Wilets L 1987 J. Phys. G 13 1
[34]Wang E K, Li J R and Liu L S 1990 Phys. Rev. D 41 2288
[35]Gao S, Wang E K and Li J R 1992 Phys. Rev. D 46 3211
[36]Yang Z W and Zhuang P F 2004 Phys. Rev. C 69 035203
[37]Mao H, Yao M J and Zhao W Q 2008 Phys. Rev. C 77 065205
[38]Wetterich C 1990 Z. Phys. C 48 693
[39]Wetterich C 1993 Phys. Lett. B 301 90
[40]Floerchinger S, Schmidt R, Moroz S and Wetterich C 2009 Phys. Rev. A 79 013603
[41]Diehl S, Floerchinger S, Gies H, Pawlowski J M and Wetterich C 2010 Ann. Phys. 522 615
[42]Friman B, Hebeler K and Schwenk A 2012 Lect. Notes Phys. 852 245
[43]Schaefer B J and Pirner H J 1999 Nucl. Phys. A 660 439
[44]Bohr O, Schaefer B J and Wambach J 2001 Int. J. Mod. Phys. A 16 3823
[45]Blaizot J P, Ipp A, Mendez-Galain R and Wschebor N 2007 Nucl. Phys. A 784 376
[46]Stokic B, Friman B and Redlich K 2010 Eur. Phys. J. C 67 425
[47]Herbst T K, Pawlowski J M and Schaefer B J 2011 Phys. Lett. B 696 58
[48]Fukushima K, Kamikado K and Klein B 2011 Phys. Rev. D 83 116005
[49]Jiang Y and Zhuang P F 2012 Phys. Rev. D 86 105016
[50]Eser J, Grahl M and Rischke D H 2015 Phys. Rev. D 92 096008
[51]Salmhofer M and Honerkamp C 2001 Prog. Theor. Phys. 105 1
[52]Fukushima K and Pawlowski J M 2012 Phys. Rev. D 86 076013
[53]Tanizaki Y, Fej?s G and Hatsuda T 2014 Prog. Theor. Exp. Phys. 043I01
[54]Tetradis N 1998 Phys. Lett. B 431 380
[55]Litim D F 1997 Phys. Lett. B 393 103
[56]Strumia A and Tetradis N 1999 Nucl. Phys. B 542 719
[57]Tetradis N 2001 Int. J. Mod. Phys. A 16 1927
[58]Zhong F and Chen Q Z 2005 Phys. Rev. Lett. 95 175701
[59]Braun J, Gies H and Pawlowski J M 2010 Phys. Lett. B 684 262
[60]Fejos G 2014 Phys. Rev. D 90 096011
[61]Litim D F 2001 Phys. Rev. D 64 105007
Litim D F 2000 Phys. Lett. B 486 92
Litim D F 2001 Int. J. Mod. Phys. A 16 2081
[62]Andersen J O and Tranberg A 2012 J. High Energy Phys. 1208 1
[63]Kamikado K and Kanazawa T 2015 J. High Energy Phys. 1501 129
[64]Jungnickel D U and Wetterich C 1996 Phys. Rev. D 53 5142
[65]Skokov V, Stoki? B, Friman B and Redlich K 2010 Phys. Rev. C 82 015206
[66]Nakano E, Scjaefer B J, Stoki? B, Friman B and Redlich K 2010 Phys. Lett. B 682 401
[67]Skokov V 2012 Phys. Rev. D 85 034026
[68]Skokov V, Friman B and Redlich K 2011 Phys. Rev. C 83 054904
[69]Berges J, Jungnickel D U and Wetterich C 1999 Phys. Rev. D 59 034010
Berges J, Jungnickel D U and Wetterich C 2000 Eur. Phys. J. C 13 323
[70]Landau L D and Lifshitz E M 1986 Statistical Physics 3rd edn (New York: Addison-Wesley)
Related articles from Frontiers Journals
[1] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 112501
[2] Zhen-Yu Xu, Jian-Li Liu, Pan-Pan Zhang, Jing-Bo Zhang, Lei Huo. Elliptic Flow Splitting between Particles and their Antiparticles in Au+Au Collisions from a Multiphase Transport Model[J]. Chin. Phys. Lett., 2017, 34(6): 112501
[3] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 112501
[4] XU Shu-Sheng, SHI Yuan-Mei, YANG You-Chang, CUI Zhu-Fang, ZONG Hong-Shi. Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics[J]. Chin. Phys. Lett., 2015, 32(12): 112501
[5] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 112501
[6] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 112501
[7] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 112501
[8] REN Chun-Fu, ZHANG Xiao-Bing, ZHANG Yi. Magnetic Effects in Color-Flavor Locked Superconducting Phase with the Additional Chiral Condensates[J]. Chin. Phys. Lett., 2014, 31(06): 112501
[9] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 112501
[10] QU Zhen, LIU Yun-Peng, ZHUANG Peng-Fei. Dissociation Temperature of Strictly Confined Charmonium States[J]. Chin. Phys. Lett., 2012, 29(3): 112501
[11] FU Yong-Ping, LI Yun-De . Intermediate Mass Dileptons from the Passage of Jets and High Energy Photons through Quark-Gluon Plasma[J]. Chin. Phys. Lett., 2010, 27(10): 112501
[12] XIANG Wen-Chang, WANG Sheng-Qin, ZHOU Dai-Cui. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects[J]. Chin. Phys. Lett., 2010, 27(7): 112501
[13] YU Li-Li, M. J. Efaaf, ZHANG Wei-Ning,. Interferometry Signatures for QCD First-Order Phase Transition in High Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2010, 27(2): 112501
[14] FU Yong-Ping, LI Yun-De. Jet-Photon Production at RHIC and LHC[J]. Chin. Phys. Lett., 2009, 26(11): 112501
[15] LIU Jian-Li, SHAN Lian-Qiang, FENG Qi-Chun, WU Feng-Juan, ZHANG Jing-Bo, TANG Gui-Xin, HUO Lei. A Non-Zero Hadronic Elliptic Flow with a Vanished Partonic Elliptic Flow in a Coalescence Scenario[J]. Chin. Phys. Lett., 2009, 26(7): 112501
Viewed
Full text


Abstract