Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 110302    DOI: 10.1088/0256-307X/33/11/110302
GENERAL |
Joint Wavelet–Fractional Fourier Transform
Jun Song1**, Rui He1, Hao Yuan1, Jun Zhou1, Hong-Yi Fan2
1Department of Material and Chemical Engineering, West Anhui University, Lu'an 237012
2Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
Jun Song, Rui He, Hao Yuan et al  2016 Chin. Phys. Lett. 33 110302
Download: PDF(613KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on Dirac's representation theory and the technique of integration within an ordered product of operators, we put forward the joint wavelet-fractional Fourier transform in the context of quantum mechanics. Its corresponding transformation operator is found and the normally ordered form is deduced. This kind of transformation may be applied to analyzing and identifying quantum states.
Received: 14 March 2016      Published: 28 November 2016
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.65.Db (Functional analytical methods)  
  02.30.Uu (Integral transforms)  
Fund: Supported by the Natural Science Foundation of the Higher Education Institutions of Anhui Province under Grant Nos KJ2013A258 and KJ2013A261.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/110302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Song
Rui He
Hao Yuan
Jun Zhou
Hong-Yi Fan
[1]Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia: SIAM)
[2]Chui C K 1992 An Introduction to Wavelets (San Diego: Academic Press)
[3]Pinsky M A 2002 Introduction to Fourier Analysis and Wavelets (Sydney: Brooks/Cole)
[4]Jaffard S, Meyer Y and Ryan R D 2001 Wavelets, Tools for Science & Technology (Philadelphia: SIAM)
[5]Namias V 1980 IMA J. Appl. Math. 25 241
[6]Mendlovic D and Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875
[7]Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181
[8]Bernardo L and Soares O D D 1994 Opt. Commun. 110 517
[9]Mendlovic D, Ozaktas H M and Lohmann A W 1994 Appl. Opt. 33 6188
[10]Liu S T, Xu J D, Zhang Y, Chen L X and Li C F 1995 Opt. Lett. 20 1053
[11]Liu S T, Wu J and Li C F 1995 Opt. Lett. 20 1415
[12]Zhang Y, Gu B Y, Yang G Z, Ren H W, Zhang X R and Liu S T 1997 Opt. Lett. 22 1583
[13]Liu S T, Mi Q L and Zhu B H 2001 Opt. Lett. 26 1242
[14]Lv C H, Fan H Y and Li D W 2015 Chin. Phys. B 24 020301
[15]Fan H Y, Chen J H and Zhang P F 2015 Front. Phys. 10 101401
[16]Fan H Y and Liu S G 2007 Opt. Lett. 32 1507
[17]Fan H Y and Lu H L 2007 Opt. Lett. 32 554
[18]Song J and Fan H Y 2010 Chin. Phys. Lett. 27 024210
[19]Song J and Fan H Y 2010 Int. J. Theor. Phys. 49 2582
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 110302
[2] S. P. Toh. Kochen-Specker Sets with a Mixture of 16 Rank-1 and 14 Rank-2 Projectors for a Three-Qubit System[J]. Chin. Phys. Lett., 2013, 30(10): 110302
[3] S. P. Toh. State-Independent Proof of Kochen–Specker Theorem with Thirty Rank-Two Projectors[J]. Chin. Phys. Lett., 2013, 30(10): 110302
[4] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 110302
Viewed
Full text


Abstract