Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 090701    DOI: 10.1088/0256-307X/33/9/090701
GENERAL |
An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes
Ming-Liang Liao1,2, Yan-Yu Wei1**, Hai-Long Wang1,2, Yu Huang4, Jin Xu1, Yang Liu1,2, Guo Guo1, Xin-Jian Niu1, Yu-Bin Gong1, Gun-Sik Park3
1National Key Laboratory of High Power Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
2Southwest China Research Institute of Electronic Equipment (CETC 29), Chengdu 610036
3Center for THz-Bio Application Systems, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
4Engneering and Technical College, Chendu University of Technology, Leshan 614007
Cite this article:   
Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang et al  2016 Chin. Phys. Lett. 33 090701
Download: PDF(678KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Millimeter-wave traveling-wave tube (TWT) prevails nowadays as the amplifier for radar, communication and electronic countermeasures. The rectangular waveguide grating is a promising all-metal interaction circuit for the millimeter-wave TWT with advantages of high power capacity, fine heat dissipation, scalability to smaller dimensions for shorter wavelengths, compact structure and robust performance. Compared with the traditional closed structure, the open rectangular waveguide grating (ORWG) has wider bandwidth, lower cut-off frequency, and higher machining precision for higher working frequencies due to the open transverse. It is a potential structure that can work in the millimeter wave and even Terahertz band. The rf characteristics including dispersion and interaction impedance are investigated by both theoretic calculation and software simulation. The influences of the structure parameters are also discussed and compared, and the theoretical results agree well with the simulation results. Based on the study, the ORWG will favor the design of a broadband and high-power millimeter-wave TWT.
Received: 06 April 2016      Published: 30 September 2016
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/090701       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/090701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Liang Liao
Yan-Yu Wei
Hai-Long Wang
Yu Huang
Jin Xu
Yang Liu
Guo Guo
Xin-Jian Niu
Yu-Bin Gong
Gun-Sik Park
[1]He J et al 2009 Chin. Phys. Lett. 26 114103
[2]Liao M L et al 2009 Chin. Phys. Lett. 26 114207
[3]Wei Y Y et al 2014 IEEE Electron Device Lett. 35 1058
[4]Wang W X et al 2003 Int. J. Infrared Millimeter Waves 24 1469
[5]Liao M L et al 2010 IEEE Trans. Plasma Sci. 38 1574
[6]McVey B D et al 1994 IEEE Trans. Microwave Theory Tech. 42 995
[7]Joe J et al 1994 Phys. Plasmas 1 176
[8]Zaginaylov G I et al 2000 IEEE Trans. Plasma Sci. 28 614
[9]Zaginaylov G I et al 2002 IEEE Trans. Plasma Sci. 30 1151
[10]Maragos A A et al 2003 IEEE Trans. Plasma Sci. 31 1075
[11]Lu Z G et al 2007 Int. J. Infrared Millimeter Waves 27 791
[12]Collin R E 1966 Foundation of Microwave Engineering (New York: Mc-Graw-Hill)
[13]Huang Y 2007 Master Dissertation (Chengdu: University of Electronic Science and Technology of China)
[14]Marshall E M et al 1988 IEEE Trans. Plasma Sci. 16 199
[15]Leavitt R P et al 1979 Appl. Phys. Lett. 35 363
[16]Vavriv D M and Schuenemann K 1998 Phys. Rev. E 57 5993
[17]Leou K C et al 1998 IEEE Trans. Plasma Sci. 26 518
Related articles from Frontiers Journals
[1] Fu-Chun Mao, Ming Huang, Cheng-Fu Yang, Ting-Hua Li, Jia-Lin Zhang, Si-Yu Chen. Orbital Angular Momentum Generation Using Circular Ring Resonators in Radio Frequency[J]. Chin. Phys. Lett., 2018, 35(2): 090701
[2] Hai-Rui Bao, Wen-Hu Liao, Xin-Cheng Zhang, Min Zuo. Width-Dependent Optical Properties for Zigzag-Edge Silicene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(1): 090701
[3] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 090701
[4] DU Hai-Wei, YANG Nan. Theoretical Investigation on THz Generation from Optical Rectification with Tilted-Pulse-Front Excitation[J]. Chin. Phys. Lett., 2014, 31(12): 090701
[5] CHEN Hua, MA Shi-Hua, YAN Wen-Xing, WU Xiu-Mei, WANG Xiao-Zhou. The Diagnosis of Human Liver Cancer by using THz Fiber-Scanning Near-Field Imaging[J]. Chin. Phys. Lett., 2013, 30(3): 090701
[6] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 090701
[7] SUN Qi-Zhi, FANG Dong-Fan**, LIU Wei, LIU Zheng-Fen, CHI Yuan, DAI Wen-Feng, HAN Wen-Hui . Experiments on Broadband EMP Radiation with an Axial Mode Helix Antenna[J]. Chin. Phys. Lett., 2011, 28(9): 090701
[8] LIN Xu-Ling, ZHANG Jian-Bing, LU Yu, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min,. High Power THz Undulator Radiation from Linear Accelerator[J]. Chin. Phys. Lett., 2010, 27(4): 090701
[9] JIU Zhi-Xian, ZUO Du-Luo, MIAO Liang, QI Chun-Chao, CHENG Zu-Hai. An Efficient Pulsed CH3OH Terahertz Laser Pumped by a TEA CO2 Laser[J]. Chin. Phys. Lett., 2010, 27(2): 090701
[10] CHEN Hua, WU Xiu-Mei, YANG Wen-Xing. Modulated Terahertz Transmission through Sub-Wavelength Cu Grating by Liquid Water[J]. Chin. Phys. Lett., 2010, 27(1): 090701
[11] LIN Xu-Ling, ZHANG Jian-Bing, LU YU, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min,. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator[J]. Chin. Phys. Lett., 2009, 26(12): 090701
[12] LIAO Ming-Liang, WEI Yan-Yu, HE Jun, GONG Yu-Bin, WANG Wen-Xiang, Gun-Sik Park. Analysis of a Novel Ka-band Folded Waveguide Amplifier for Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2009, 26(11): 090701
[13] ZHANG Hui, GUO Peng, CHANG Sheng-Jiang, YUAN Jing-He. Magnetically Tunable Terahertz Switch and Band-Pass Filter[J]. Chin. Phys. Lett., 2008, 25(11): 090701
[14] HE Shan, QIN Jia-Yin, ZENG Jian-Fen. Theoretical Studies of One-Dimensional Asymmetrical Finite Crystal in Terahertz Laser[J]. Chin. Phys. Lett., 2005, 22(1): 090701
[15] YANG Chun-Ling, DAI Jing-Min, HU Yan. Optimum Identifications of Spectral Emissivity and Temperature for Multi-Wavelength Pyrometry[J]. Chin. Phys. Lett., 2003, 20(10): 090701
Viewed
Full text


Abstract