CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Pairing Mismatched ssDNA to dsDNA Studied with Reflectometric Interference Spectroscopy Sensor |
Qing-Qing Wu, Kai-Ge Wang**, Dan Sun, Shuang Wang, Chen Zhang, Wei Zhao |
Institute of Photonics & Photon-Technology, National Center for International Research of Photoelectric Technology & Nano-functional Materials, State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Key Laboratory of Optoelectronic Technology of Shaanxi Province, Northwest University, Xi'an 710069
|
|
Cite this article: |
Qing-Qing Wu, Kai-Ge Wang, Dan Sun et al 2016 Chin. Phys. Lett. 33 088701 |
|
|
Abstract The interaction between two single-stranded DNA (ssDNA) molecules as pairing to a double-stranded DNA (dsDNA) molecule is studied by the reflectometric interference spectroscopy (RIFS) technology. A nano-porous anode alumina membrane coated an Au layer is employed as the sensor substrate. The results indicate that when there are mismatched nucleotide bases, the effective optical thicknesses (${\rm OT}_{\rm eff})$ have obvious difference, and the changes of ${\rm OT}_{\rm eff}$ are connected with the sensor layer thickness and the effective refractive index. It is also demonstrated that the RIFS technique can be used to precisely detect the ssDNA molecules with individual base mismatched as pairing to dsDNA.
|
|
Received: 07 April 2016
Published: 31 August 2016
|
|
|
|
|
|
[1] | Santos A, Macías G, Ferreí-Borrull J, Pallarès J and Marsal L F 2012 ACS Appl. Mater. Interfaces 4 3584 | [2] | Daems D, Knez K, Delport F, Spasic D and Lammertyn J 2016 Analyst 141 1906 | [3] | Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y and Wang P F 2012 Chin. Phys. B 21 020601 | [4] | Li L, Hutter T, Steiner U and Mahajan S 2013 Analyst 138 4574 | [5] | Choi H W, Sakata Y, Ooya T and Takeuchi T 2015 J. Biosci. Bioeng. 119 195 | [6] | Kumeria T and Losic D 2011 Phys. Status Solidi RRL 5 406 | [7] | Xu F, Lu L, Lu W W and Yu B L 2013 Chin. Opt. Lett. 11 082802 | [8] | Pan S and Rothberg L J 2003 Nano Lett. 3 811 | [9] | Kilian K A, B?cking T, Gaus K, Gal M and Gooding J J 2007 ACS Nano 1 355 | [10] | Kaspar S, Rathgeb F, Nopper D and Gauglitz G 1999 Fresenius' J. Anal. Chem. 363 193 | [11] | Kumeria T, Gulati K, Santos A and Losic D 2013 ACS Appl. Mater. Interfaces 5 5436 | [12] | Mouvet C, Amalric L, Broussard S, Lang G, Brecht A and Gauglitz G 1996 Environ. Sci. Technol. 30 1846 | [13] | Pacholski C, Sartor M, Sailor M J, Cunin F and Miskelly M 2005 J. Am. Chem. Soc. 127 11636 | [14] | Lin C Y and Liu D H 2012 Chin. Phys. B 21 094216 | [15] | Belmont A S, Jaeger S, Knopp D, Niessner R, Gauglitz G and Haupt K 2007 Biosens. Bioelectron. 22 3267 | [16] | Zhou L D, Meng G W and Phillipp F 2001 Chin. Phys. 10 S117 | [17] | Zhou W Y, Li Y B, Liu Z Q, Tang D S, Zou X P and Wang G 2001 Chin. Phys. 10 218 | [18] | Jane A, Dronov R, Hodges A and Voelcker N H 2009 Trends Biotechnol. 27 230 | [19] | Macias G, Hernández-Eguía L P, Ferré-Borrull J, Pallares J and Marsal F 2013 ACS Appl. Mater. Interfaces 5 8093 | [20] | Kumeria T and Losic D 2012 Nanoscale Res. Lett. 7 88 | [21] | Rai V, Deng J J and Toh C S 2012 Talanta 98 112 | [22] | Deng J J and Toh C S 2013 Sensors 13 7774 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|