Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 078102    DOI: 10.1088/0256-307X/33/7/078102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires
M. A. Khan1**, A. Qayyum1, I. Ahmed2,3,4, T. Iqbal1, A. A. Khan1, R. Waleed1, B. Mohuddin1, M. Malik3,4
1Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
2National Center of Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
3UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
4Nanosciences African Network, iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa
Cite this article:   
M. A. Khan, A. Qayyum, I. Ahmed et al  2016 Chin. Phys. Lett. 33 078102
Download: PDF(564KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The 0.8 MeV copper (Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO$_{2}$ NWs) are investigated. The samples are irradiated at three different doses $5\times10^{12}$ ions/cm$^{2}$, $1\times10^{13}$ ions/cm$^{2}$ and $5\times10^{13}$ ions/cm$^{2}$ at room temperature. The XRD analysis shows that the tetragonal phase of SnO$_{2}$ NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine SnO$_{2}$ NWs exhibit the chemical composition of SnO$_{2}$ while the Cu–O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO$_{2}$ is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO$_{2}$ NWs are studied before and after Cu ion irradiation. Band gap analysis reveals that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.
Received: 13 February 2016      Published: 01 August 2016
PACS:  81.05.Hd (Other semiconductors)  
  81.07.Gf (Nanowires)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  61.80.Jh (Ion radiation effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/078102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/078102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. A. Khan
A. Qayyum
I. Ahmed
T. Iqbal
A. A. Khan
R. Waleed
B. Mohuddin
M. Malik
[1]Wang E W, Sheehan P E and Lieber C M 1997 Science 277 1971
[2]Holmes J D, Johnston K P, Doty R C et al 2000 Science 287 1471
[3]Hicks and Dresselhaus M S 1993 Phys. Rev. B 47 1663
[4]Miyamoto Y, Miyake Y, Asada M et al 2001 IEEE J. Quantum Electron. 25 200
[5]Yang P, Yan H, Mao S et al 2002 Adv. Funct. Mater. 12 323
[6]Brus L 1986 J. Phys. Chem. 90 2555
[7]Díaz-Flores L, Ramírez-Bon R, Mendoza-Galván A et al 2003 J. Phys. Chem. Solids 64 1037
[8]Chen Z, Lai J K L, Shek C H et al 2003 J. Mater. Res. 18 1289
[9]Vuong D D, Sakai G, Shimanoe K et al 2004 Sens. Actuators B 103 386
[10]Yong S, Jie L, Duglas B et al 2014 Appl. Phys. Lett. 105 243105
[11]Jianfeng Z, Lihong B, Richard A W et al 2011 Nano Lett. 11 4885
[12]Xu Z H et al 2010 J. Mater. Res. 25 880
[13]Bharat B and Li X D 1997 J. Mater. Res. 12 54
[14]Bushra B, Shehla H, Madhuku M et al 2015 Curr. Appl. Phys. 15 642
[15]Shehla H, Shakil K, Iqbal J et al 2015 Curr. Nanosci. 11 792
[16]Ishaq A, Yan L, Suixia H et al 2009 Nucl. Sci. Tech. 20 197
[17]Mohanty T, Dhounsi S, Kumar b P et al 2009 Surf. Coat. Technol. 203 2410
[18]Iqbal J, Tabassum H, Ahmad I et al 2014 Sain Malays. 43 283
[19]Peng X S, Zhang L D, Meng G W et al 2003 J. Appl. Phys. 93 1760
[20]Sumin de P 1974 Can. Mineral. 12 262
[21]Srivastava D N, Chappel S, Palchik O et al 2002 Langmuir 18 4160
[22]Stephan L and Mostafa A E 2000 Int. Rev. Phys. Chem. 19 409
[23]Aditya S, Verma K D, Mayora V et al 2010 Radiat. Eff. Defects Solids 165 930
Related articles from Frontiers Journals
[1] Min Zhang, Chaoliang Hu, Qi Zhang, Feng Liu, Shen Han, Chenguang Fu, and Tiejun Zhu. Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping[J]. Chin. Phys. Lett., 2021, 38(12): 078102
[2] Xu-Dong Li, Zeng-Gong Jiang, Qiang Gu, Ming-Hua Zhao, Li Guo. Preliminary Systematic Study of the Temperature Effect on the K–Cs–Sb Photocathode Performance Based on the K and Cs Co-Evaporation[J]. Chin. Phys. Lett., 2020, 37(1): 078102
[3] Fan Zhang, Xiao-Ping Li, Xiao-Shen Li. Development of Preparation Systems with K$_{2}$CsSb Photocathodes and Study on the Preparation Process[J]. Chin. Phys. Lett., 2019, 36(2): 078102
[4] Si-Min Huang, Bo Qian, Ruo-Xi Shen, Yong-Lin Xie. Nonlinear Doping, Chemical Passivation and Photoluminescence Mechanism in Water-Soluble Silicon Quantum Dots by Mechanochemical Synthesis[J]. Chin. Phys. Lett., 2018, 35(3): 078102
[5] Shi Cheng, Yong-Wei Chang, Nan Gao, Ye-Min Dong, Lu Fei, Xing Wei, Xi Wang. Radio-Frequency Characteristics of Partial Dielectric Removal HR-SOI and TR-SOI Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 078102
[6] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 078102
[7] LU Yu-Hua, WANG Wen-Gui, WENG Yu-Yan, DONG Wen. Simple Method to Fabricate Au Nanoparticle-Decorated TiO2 Nanotube Arrays for Enhanced Visible Light Photocurrent[J]. Chin. Phys. Lett., 2015, 32(10): 078102
[8] ZHANG Li, LIU Fang-Fang, LI Feng-Yan, HE Qing, LI Chang-Jian, LI Bao-Zhang, ZHU Hong-Bing. Developments of High-Efficiency Flexible Cu(In,Ga)Se2 Thin Film Solar Cells on a Polyimide Sheet by Sodium Incorporation[J]. Chin. Phys. Lett., 2014, 31(06): 078102
[9] LIU Bin, SUN Guo-Sheng, LIU Xing-Fang, ZHANG Feng, DONG Lin, ZHENG Liu, YAN Guo-Guo, LIU Sheng-Bei, ZHAO Wan-Shun, WANG Lei, ZENG Yi-Ping, LI Xi-Guang, WANG Zhan-Guo, YANG Fei. Fast Homoepitaxial Growth of 4H-SiC Films on 4° off-Axis Substrates in a SiH4-C2H4-H2 System[J]. Chin. Phys. Lett., 2013, 30(12): 078102
[10] MA Feng, WANG Shi-Rong**, LI Xiang-Gao, YAN Dong-Hang . Improved Performance of Fluorinated Copper Phthalocyanine Thin Film Transistors Using Para-hexaphenyl as the Inducing Layer[J]. Chin. Phys. Lett., 2011, 28(11): 078102
[11] JIANG Yi-Ping, JIA Xiao-Peng, GUO Wei, XU Hui-Wen, DENG Le, ZHENG Shi-Zhao, MA Hong-An. Elevation of the Power Factor of Co4Sb12 Skutterudite with Sm-Doping in High-Pressure High-Temperature Synthesis[J]. Chin. Phys. Lett., 2010, 27(6): 078102
[12] LI Zhi-Yun, SUN Ji-Wei, ZHANG Yu-Ming, ZHANG Yi-Men, TANG Xiao-Yan. Methods for Thickness Determination of SiC Homoepilayers by Using Infrared Reflectance Spectroscopy[J]. Chin. Phys. Lett., 2010, 27(6): 078102
[13] ZHU Pin-Wen, HONG You-Liang, WANG Xin, CHEN Li-Xue, IMAI Yoshio. Preparation of Functional Gradient Material n-PbTe with Continuous Carrier Concentration[J]. Chin. Phys. Lett., 2010, 27(5): 078102
[14] WANG He, LI Chun-Hong, WANG Li-Juan, WANG Hai-Bo, YAN Dong-Hang. Electrical Response of Flexible Vanadyl-Phthalocyanine Thin-Film Transistors under Bending Conditions[J]. Chin. Phys. Lett., 2010, 27(2): 078102
[15] JI Zhen-Guo, HAO Fang, WANG Chao, XI Jun-Hua. Centimetre-Long Single Crystalline ZnO Fibres Prepared by Vapour Transportation[J]. Chin. Phys. Lett., 2008, 25(9): 078102
Viewed
Full text


Abstract