ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Magic Wavelengths for the $1S$–$2S$ and $1S$–$3S$ Transitions in Hydrogen Atoms |
Dong Yin1,2, Yong-Hui Zhang1,3, Cheng-Bin Li1**, Xian-Zhou Zhang3 |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate University of the Chinese Academy of Sciences, Beijing 100049 3Department of Physics, Henan Normal University, Xinxiang 453007
|
|
Cite this article: |
Dong Yin, Yong-Hui Zhang, Cheng-Bin Li et al 2016 Chin. Phys. Lett. 33 073101 |
|
|
Abstract The dynamic dipole polarizabilities for $1S$, $2S$ and $3S$ states of the hydrogen atom are calculated using the finite B-spline basis set method, and the magic wavelengths for $1S$–$2S$ and $1S$–$3S$ transitions are identified. In comparison of the solutions from the Schr?dinger and Dirac equations, the relativistic corrections on the magic wavelengths are of the order of $10^{-2}$ nm. The laser intensities for a 300-$E_{\rm r}$-deep optical trap and the heating rates at 514 and 1371 nm are estimated. The reliable prediction of the magic wavelengths would be helpful for the experimental design on the optical trapping of the hydrogen atoms, and in turn, it would be helpful to improve the accuracy of the measurements of the hydrogen $1S$–$2S$ and $1S$–$3S$ transitions.
|
|
Received: 19 April 2016
Published: 01 August 2016
|
|
PACS: |
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
|
|
|
[1] | Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 | [2] | Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331 | [3] | Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 | [4] | H?nsch T W and Walther H 1999 Rev. Mod. Phys. 71 S242 | [5] | Mohr P J, Taylor B N and Newell D B 2008 Rev. Mod. Phys. 80 633 | [6] | Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P and H?nsch T W 2011 Phys. Rev. Lett. 107 203001 | [7] | Matveev A, Parthey C G, Predehl K, Alnis J, Beyer A, Holzwarth R, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Grosche G, Terra O, Legero T, Schnatz H, Weyers S, Altschul B and H?nsch T W 2013 Phys. Rev. Lett. 110 230801 | [8] | Arnoult O, Nez F, Julien L and Biraben F 2010 Eur. Phys. J. D 60 243 | [9] | Galtier S, Fleubaey H, Thomas S, Julien L, Biraben F and Nez F 2015 J. Phys. Chem. Ref. Data 44 031201 | [10] | Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811 | [11] | Kawasaki A 2015 Phys. Rev. A 92 042507 | [12] | Zhang Y H, Tang L Y, Zhang X Z, Shi T Y and Mitroy J 2012 Chin. Phys. Lett. 29 063101 | [13] | Tang L Y, Zhang Y H, Zhang X Z, Jiang J and Mitroy J 2012 Phys. Rev. A 86 012505 | [14] | Zhang Y H, Tang L Y, Zhang X Z, Jiang J and Mitory J 2012 J. Chem. Phys. 136 174107 | [15] | Tang Y B, Zhong Z X, Li C B, Qiao H X and Shi T Y 2013 Phys. Rev. A 87 022510 | [16] | Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001 | [17] | Tang A Z and Chan F T 1986 Phys. Rev. A 33 3671 | [18] | Baye D 2012 Phys. Rev. A 86 062514 | [19] | Filippin L, Godefroid M and Baye D 2014 Phys. Rev. A 90 052520 | [20] | Kramida A E 2010 At. Data Nucl. Data Tables 96 586 | [21] | Katori H, Ido T and Kuwata-Gonokami M 1999 J. Phys. Soc. Jpn. 68 2479 | [22] | Bloch I 2005 Nat. Phys. 1 23 | [23] | Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A 69 021403 | [24] | Savard T A, O'Hara K M and Thomas J E 1997 Phys. Rev. A 56 R1095 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|