GENERAL |
|
|
|
|
The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators |
Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li** |
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai et al 2016 Chin. Phys. Lett. 33 070501 |
|
|
Abstract The Ott–Antonsen ansatz provides a powerful tool in investigating synchronization among coupled phase oscillators. However, previous works using the ansatz only focused on the evolution of the order parameter and the information on desynchronized oscillators is less discussed. In this work, we show that the Ott–Antonsen ansatz can also be applied to investigate the desynchronous dynamics in coupled phase oscillators. Studying the original Kuramoto model and two of its variants, we find that the dynamics of $\alpha(\omega)$, the coefficient in the Fourier series of the probability density, can give most of the information on the synchronization, for example, the threshold of natural frequency delimiting the oscillators synchronized and desychronized by the mean field, the formulation of the effective frequency $\omega_{\rm e}(\omega)$ of desynchronous oscillators, and the structure of the graph $\omega_{\rm e}(\omega)$.
|
|
Received: 07 March 2016
Published: 01 August 2016
|
|
PACS: |
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
43.40.At
|
(Experimental and theoretical studies of vibrating systems)
|
|
36.40.Ei
|
(Phase transitions in clusters)
|
|
|
|
|
[1] | Buck J and Buck E 1976 Synchronous Fireflies Sci. Am. 234 74 | [2] | Swift J W, Strogatz S H and Wiesenfeld K 1992 Physica D 55 239 | [3] | Wiesenfeld K, Colet P and Strogatz S H 1996 Phys. Rev. Lett. 76 404 | [4] | Wiesenfeld K, Colet P and Strogatz S H 1998 Phys. Rev. E 57 1563 | [5] | Javaloyes J, Perrin M and Politi A 2008 Phys. Rev. E 78 011108 | [6] | Kiss I Z, Wang W and Hudson J L 2002 Chaos 12 252 | [7] | Wickramasinghe M and Kiss I Z 2011 Phys. Rev. E 83 016210 | [8] | Néda, Ravasz E, Vicsek T, Brechet Y and Barabási A L 2000 Phys. Rev. E 61 6987 | [9] | Eckhardt B, Ottott E, Strogatz S H, Abrams D M and McRobie A 2007 Phys. Rev. E 75 021110 | [10] | Kuramoto Y 1975 In International Symposium on Mathematical Problems in Theoretical Physics (New York: Springer) | [11] | Ott E and Antonsen T M 2008 Chaos 18 037113 | [12] | Ott E and Antonsen T M 2009 Chaos 19 023117 | [13] | Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102 | [14] | Martens E A, Barreto E, Strogatz S H, Ott E, So P and Antonsen T M 2009 Phys. Rev. E 79 026204 | [15] | Laing C R 2009 Physica D 238 1569 | [16] | Skardal P S, Restrepo J G and Ott E 2015 Phys. Rev. E 91 060902(R) | [17] | Montbri E, Kurths J and Blasius B 2004 Phys. Rev. E 70 056125 | [18] | Engelbrecht J R and Mirollo R 2012 Phys. Rev. Lett. 109 034103 | [19] | Yuan D, Zhang M and Yang J Z 2014 Phys. Rev. E 89 012910 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|