Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 070501    DOI: 10.1088/0256-307X/33/7/070501
GENERAL |
The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators
Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li**
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai et al  2016 Chin. Phys. Lett. 33 070501
Download: PDF(1327KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Ott–Antonsen ansatz provides a powerful tool in investigating synchronization among coupled phase oscillators. However, previous works using the ansatz only focused on the evolution of the order parameter and the information on desynchronized oscillators is less discussed. In this work, we show that the Ott–Antonsen ansatz can also be applied to investigate the desynchronous dynamics in coupled phase oscillators. Studying the original Kuramoto model and two of its variants, we find that the dynamics of $\alpha(\omega)$, the coefficient in the Fourier series of the probability density, can give most of the information on the synchronization, for example, the threshold of natural frequency delimiting the oscillators synchronized and desychronized by the mean field, the formulation of the effective frequency $\omega_{\rm e}(\omega)$ of desynchronous oscillators, and the structure of the graph $\omega_{\rm e}(\omega)$.
Received: 07 March 2016      Published: 01 August 2016
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  43.40.At (Experimental and theoretical studies of vibrating systems)  
  36.40.Ei (Phase transitions in clusters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/070501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nian-Ping Wu
Hong-Yan Cheng
Qiong-Lin Dai
Hai-Hong Li
[1]Buck J and Buck E 1976 Synchronous Fireflies Sci. Am. 234 74
[2]Swift J W, Strogatz S H and Wiesenfeld K 1992 Physica D 55 239
[3]Wiesenfeld K, Colet P and Strogatz S H 1996 Phys. Rev. Lett. 76 404
[4]Wiesenfeld K, Colet P and Strogatz S H 1998 Phys. Rev. E 57 1563
[5]Javaloyes J, Perrin M and Politi A 2008 Phys. Rev. E 78 011108
[6]Kiss I Z, Wang W and Hudson J L 2002 Chaos 12 252
[7]Wickramasinghe M and Kiss I Z 2011 Phys. Rev. E 83 016210
[8]Néda, Ravasz E, Vicsek T, Brechet Y and Barabási A L 2000 Phys. Rev. E 61 6987
[9]Eckhardt B, Ottott E, Strogatz S H, Abrams D M and McRobie A 2007 Phys. Rev. E 75 021110
[10]Kuramoto Y 1975 In International Symposium on Mathematical Problems in Theoretical Physics (New York: Springer)
[11]Ott E and Antonsen T M 2008 Chaos 18 037113
[12]Ott E and Antonsen T M 2009 Chaos 19 023117
[13]Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102
[14]Martens E A, Barreto E, Strogatz S H, Ott E, So P and Antonsen T M 2009 Phys. Rev. E 79 026204
[15]Laing C R 2009 Physica D 238 1569
[16]Skardal P S, Restrepo J G and Ott E 2015 Phys. Rev. E 91 060902(R)
[17]Montbri E, Kurths J and Blasius B 2004 Phys. Rev. E 70 056125
[18]Engelbrecht J R and Mirollo R 2012 Phys. Rev. Lett. 109 034103
[19]Yuan D, Zhang M and Yang J Z 2014 Phys. Rev. E 89 012910
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 070501
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 070501
[3] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 070501
[4] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 070501
[5] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 070501
[6] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 070501
[7] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070501
[8] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070501
[9] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 070501
[10] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 070501
[11] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 070501
[12] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 070501
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 070501
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 070501
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 070501
Viewed
Full text


Abstract