GENERAL |
|
|
|
|
Signature of Critical Point in Momentum Profile of Trapped Ultracold Bose Gases |
Qiang Zhu1,2,3, Bing Wang1,2,3, De-Zhi Xiong1,2**, Bao-Long Lü1,2 |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Qiang Zhu, Bing Wang, De-Zhi Xiong et al 2016 Chin. Phys. Lett. 33 070306 |
|
|
Abstract We present a new method to identify the critical point for the Bose–Einstein condensation (BEC) of a trapped Bose gas. We calculate the momentum distribution of an interacting Bose gas near the critical temperature, and find that it deviates significantly from the Gaussian profile as the temperature approaches the critical point. More importantly, the standard deviation between the calculated momentum spectrum and the Gaussian profile at the same temperature shows a turning point at the critical point, which can be used to determine the critical temperature. These predictions are also confirmed by our BEC experiment for magnetically trapped $^{87}$Rb gases.
|
|
Received: 11 April 2016
Published: 01 August 2016
|
|
PACS: |
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
|
|
|
[1] | Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198 | [2] | Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 | [3] | Huang K 1987 Statistical Mechanics (New York: John Wiley & Sons) | [4] | Pelissetto A and Vicari E 2002 Phys. Rep. 368 549 | [5] | Bezett A and Blakie P B 2009 Phys. Rev. A 79 033611 | [6] | Campostrini M and Vicari E 2009 Phys. Rev. Lett. 102 240601 | [7] | Ho T L and Zhou Q 2009 Nat. Phys. 6 131 | [8] | Chen Y Y, Jiang Y Z, Guan X W and Zhou Q 2014 Nat. Commun. 5 5140 | [9] | Ensher J R, Jin D S, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 4984 | [10] | Bloch I, H?nsch T W and Esslinger T 2000 Nature 403 166 | [11] | Donner T, Ritter S, Bourdel T, ?ttl A, K?hl M and Esslinger T 2007 Science 315 1556 | [12] | Krüger P, Hadzibabic Z and Dalibard J 2007 Phys. Rev. Lett. 99 040402 | [13] | Hung C L, Zhang X, Gemelke N and Chin C 2011 Nature 470 236 | [14] | Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B and Xiong H W 2013 Laser Phys. Lett. 10 125502 | [15] | Navon N, Gaunt A L, Smith R P and Hadzibabic Z 2015 Science 347 167 | [16] | Pethick C J and Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) | [17] | Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315 | [18] | Giorgini S, Pitaevskii L P and Stringari S 1996 Phys. Rev. A 54 R4633 | [19] | Giorgini S, Pitaevskii L P and Stringari S 1997 J. Low Temp. Phys. 109 309 | [20] | Grüter P, Ceperley D and Lalo? F 1997 Phys. Rev. Lett. 79 3549 | [21] | Houbiers M, Stoof H T C and Cornell E A 1997 Phys. Rev. A 56 2041 | [22] | Minguzzi A, Conti S and Tosi M P 1997 J. Phys.: Condens. Matter 9 L33 | [23] | Kashurnikov V A, Prokof'ev N V and Svistunov B V 2001 Phys. Rev. Lett. 87 120402 | [24] | Xiong H W, Liu S J, Huang G X, Xu Z J and Zhang C Y 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3013 | [25] | Gerbier F, Thywissen J H, Richard S, Hugbart M, Bouyer P and Aspect A 2004 Phys. Rev. Lett. 92 030405 | [26] | Giorgini S, Pitaevskii L P and Stringari S 1998 Phys. Rev. Lett. 80 5040 | [27] | Xiong H W, Liu S J, Huang G X, Xu Z J and Zhang C Y 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4203 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|