Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 070306    DOI: 10.1088/0256-307X/33/7/070306
GENERAL |
Signature of Critical Point in Momentum Profile of Trapped Ultracold Bose Gases
Qiang Zhu1,2,3, Bing Wang1,2,3, De-Zhi Xiong1,2**, Bao-Long Lü1,2
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Qiang Zhu, Bing Wang, De-Zhi Xiong et al  2016 Chin. Phys. Lett. 33 070306
Download: PDF(541KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new method to identify the critical point for the Bose–Einstein condensation (BEC) of a trapped Bose gas. We calculate the momentum distribution of an interacting Bose gas near the critical temperature, and find that it deviates significantly from the Gaussian profile as the temperature approaches the critical point. More importantly, the standard deviation between the calculated momentum spectrum and the Gaussian profile at the same temperature shows a turning point at the critical point, which can be used to determine the critical temperature. These predictions are also confirmed by our BEC experiment for magnetically trapped $^{87}$Rb gases.
Received: 11 April 2016      Published: 01 August 2016
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  67.85.-d (Ultracold gases, trapped gases)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/070306       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/070306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang Zhu
Bing Wang
De-Zhi Xiong
Bao-Long Lü
[1]Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2]Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3]Huang K 1987 Statistical Mechanics (New York: John Wiley & Sons)
[4]Pelissetto A and Vicari E 2002 Phys. Rep. 368 549
[5]Bezett A and Blakie P B 2009 Phys. Rev. A 79 033611
[6]Campostrini M and Vicari E 2009 Phys. Rev. Lett. 102 240601
[7]Ho T L and Zhou Q 2009 Nat. Phys. 6 131
[8]Chen Y Y, Jiang Y Z, Guan X W and Zhou Q 2014 Nat. Commun. 5 5140
[9]Ensher J R, Jin D S, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 4984
[10]Bloch I, H?nsch T W and Esslinger T 2000 Nature 403 166
[11]Donner T, Ritter S, Bourdel T, ?ttl A, K?hl M and Esslinger T 2007 Science 315 1556
[12]Krüger P, Hadzibabic Z and Dalibard J 2007 Phys. Rev. Lett. 99 040402
[13]Hung C L, Zhang X, Gemelke N and Chin C 2011 Nature 470 236
[14]Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B and Xiong H W 2013 Laser Phys. Lett. 10 125502
[15]Navon N, Gaunt A L, Smith R P and Hadzibabic Z 2015 Science 347 167
[16]Pethick C J and Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[17]Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315
[18]Giorgini S, Pitaevskii L P and Stringari S 1996 Phys. Rev. A 54 R4633
[19]Giorgini S, Pitaevskii L P and Stringari S 1997 J. Low Temp. Phys. 109 309
[20]Grüter P, Ceperley D and Lalo? F 1997 Phys. Rev. Lett. 79 3549
[21]Houbiers M, Stoof H T C and Cornell E A 1997 Phys. Rev. A 56 2041
[22]Minguzzi A, Conti S and Tosi M P 1997 J. Phys.: Condens. Matter 9 L33
[23]Kashurnikov V A, Prokof'ev N V and Svistunov B V 2001 Phys. Rev. Lett. 87 120402
[24]Xiong H W, Liu S J, Huang G X, Xu Z J and Zhang C Y 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3013
[25]Gerbier F, Thywissen J H, Richard S, Hugbart M, Bouyer P and Aspect A 2004 Phys. Rev. Lett. 92 030405
[26]Giorgini S, Pitaevskii L P and Stringari S 1998 Phys. Rev. Lett. 80 5040
[27]Xiong H W, Liu S J, Huang G X, Xu Z J and Zhang C Y 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4203
Related articles from Frontiers Journals
[1] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 070306
[2] Yuncheng Xiong  and Lan Yin. Self-Bound Quantum Droplet with Internal Stripe Structure in One-Dimensional Spin-Orbit-Coupled Bose Gas[J]. Chin. Phys. Lett., 2021, 38(7): 070306
[3] Shifeng Yang, Tianwei Zhou, Chen Li, Kaixiang Yang, Yueyang Zhai, Xuguang Yue, Xuzong Chen. Superfluid-Mott-Insulator Transition in an Optical Lattice with Adjustable Ensemble-Averaged Filling Factors[J]. Chin. Phys. Lett., 2020, 37(4): 070306
[4] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 070306
[5] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 070306
[6] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 070306
[7] OUYANG Sheng-De, LIU Jing, XIANG Shao-Hua, SONG Ke-Hui. Ground State Property of a One-Dimensional Bose–Hubbard Model Using Time-Evolving Body Decimation[J]. Chin. Phys. Lett., 2013, 30(8): 070306
[8] SHI Yu-Ren, WANG Guang-Hui, LIU Cong-Bo, ZHOU Zhi-Gang, YANG Hong-Juan. Analytical Solutions to the Time-Independent Gross-Pitaevskii Equation with a Harmonic Trap[J]. Chin. Phys. Lett., 2012, 29(11): 070306
[9] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 070306
[10] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 070306
[11] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 070306
[12] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 070306
[13] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 070306
[14] HAO Ya-Jiang . Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap[J]. Chin. Phys. Lett., 2011, 28(1): 070306
[15] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 070306
Viewed
Full text


Abstract