Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 067501    DOI: 10.1088/0256-307X/33/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure Tuning of Magnetism and Drastic Increment of Thermal Conductivity under Applied Magnetic Field in HgCr$_{2}$S$_{4}$
Chuan-Chuan Gu1, Xu-Liang Chen1**, Chen Shen2, Lang-Sheng Ling1, Li Pi1, Zhao-Rong Yang1,2,3**, Yu-Heng Zhang1,3
1High Magnetic Field Laboratory, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230031
2Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Chuan-Chuan Gu, Xu-Liang Chen, Chen Shen et al  2016 Chin. Phys. Lett. 33 067501
Download: PDF(739KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract HgCr$_{2}$S$_{4}$ is a typical compound manifesting competing ferromagnetic (FM) and antiferromagnetic (AFM) exchanges as well as strong spin–lattice coupling. Here we study these effects by intentionally choosing a combination of magnetization under external hydrostatic pressure and thermal conductivity at various magnetic fields. Upon applying pressure up to 10 kbar at 1 kOe, while the magnitude of magnetization reduces progressively, the AFM ordering temperature $T_{\rm N}$ enhances concomitantly at a rate of about 1.5 K/kbar. Strikingly, at 10 kOe the field polarized FM state is found to be driven readily back to an AFM one even at only 5 kbar. In addition, the thermal conductivity exhibits drastic increments at various fields in the temperature range with strong spin fluctuations, reaching about 30% at 50 kOe. Consequently, the results give new experimental evidence of spin–lattice coupling. Apart from the colossal magnetocapacitance and colossal magnetoresistance reported previously, the findings here may enable new promising functionalities for potential applications.
Received: 01 March 2016      Published: 30 June 2016
PACS:  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  47.80.Fg (Pressure and temperature measurements)  
  74.25.fc (Electric and thermal conductivity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/067501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/067501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan-Chuan Gu
Xu-Liang Chen
Chen Shen
Lang-Sheng Ling
Li Pi
Zhao-Rong Yang
Yu-Heng Zhang
[1]Gardner J S, Gingras M J P and Greedan J E 2010 Rev. Mod. Phys. 82 53
[2]Balents L 2010 Nature 464 199
[3]Lee S H, Broholm C, Kim T H, Ratcliff W II and Cheong S W 2000 Phys. Rev. Lett. 84 3718
[4]Lee S H, Broholm C, Ratcliff W, Gasparovic G, Huang Q, Kim T H and Cheong S W 2002 Nature 418 856
[5]Baltzer P K, Wojtowicz P J, Robbins M and Lopatin E 1966 Phys. Rev. 151 367
[6]Hemberger J, Rudolf T, Krug von N H A, Mayr F, Pimenov A, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 97 087204
[7]Rudolf T, Kant Ch, Mayr F, Hemberger J, Tsurkan V and Loidl A 2007 Phys. Rev. B 75 052410
[8]Sushkov A B, Tchernyshyov O, Ratcliff W II, Cheong S W and Drew H D 2005 Phys. Rev. Lett. 94 137202
[9]Ji S, Lee S H, Broholm C, Koo T Y, Ratcliff W, Cheong S W and Zschack P 2009 Phys. Rev. Lett. 103 037201
[10]Tsurkan V, Zherlitsyn S, Felea V, Yasin S, Skourski Yu, Deisenhofer J, Krug von Nidda H A, Lemmens P, Wosnitza J and Loidl A 2011 Phys. Rev. Lett. 106 247202
[11]Felea V, Yasin S, Günther A, Deisenhofer J, Krug von Nidda H A, Zherlitsyn S, Tsurkan V, Lemmens P, Wosnitza J and Loidl A 2012 Phys. Rev. B 86 104420
[12]Chen X L, Yang Z R, Tong W, Huang Z H, Zhang L, Zhang S L, Song W H, Pi L, Sun Y P, Tian M L and Zhang Y H 2014 J. Appl. Phys. 115 083916
[13]Chapon L C, Radaelli P G, Hor Y S, Telling M T F and Mitchell J F 2006 arXiv:cond-mat/0608031
[14]Rudolf T, Kant Ch, Mayr F, Hemberger J, Tsurkan V and Loidl A 2007 Phys. Rev. B 76 174307
[15]Weber S, Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 96 157202
[16]Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H A, Tsurkan V and Loidl A 2005 Nature 434 364
[17]Xie Y M, Yang Z R, Zhang Z T, Yin L H, Chen X L, Song W H, Sun Y P, Zhou S Q, Tong W and Zhang Y H 2013 Europhys. Lett. 104 17005
[18]Catalan G and Scott J F 2006 arXiv:cond-mat/0607500
[19]Tsurkan V, Hemberger J, Krimmel A, Krug von Nidda H A, Lunkenheimer P, Weber S, Zestrea V and Loidl A 2006 Phys. Rev. B 73 224442
[20]Howard C J and Hunter B A 1988 A Computer Program for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns (Sydney: Lucas Heights Research Laboratories) 1–27
[21]Chen X L, Song W H and Yang Z R 2015 Chin. Phys. Lett. 32 127501
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 067501
[2] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 067501
[3] Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang, Lu-Lu Guan, Yong-Fang Li. Bright-Dark Mode Coupling Model of Plasmons[J]. Chin. Phys. Lett., 2020, 37(3): 067501
[4] Xuan Wen, Ke Yang, Hua Wu. Contrasting Magnetism in Isovalent Layered LaSr$_{3}$NiRuO$_{4}$H$_{4}$ and LaSrNiRuO$_{4}$ due to Distinct Spin-Orbital States[J]. Chin. Phys. Lett., 2019, 36(7): 067501
[5] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Orbital Dilution Effect on Structural and Magnetic Properties of FeMnXV2O4[J]. Chin. Phys. Lett., 2015, 32(02): 067501
Viewed
Full text


Abstract