CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Surface Leakage Currents in SiN and Al$_{2}$O$_{3}$ Passivated AlGaN/GaN High Electron Mobility Transistors |
Long Bai1, Wei Yan1, Zhao-Feng Li1, Xiang Yang1, Bo-Wen Zhang1, Li-Xin Tian2,3, Feng Zhang2,3, Grzegorz Cywinski4, Krzesimir Szkudlarek4, Czesław Skierbiszewski4, Wojciech Knap4,5, Fu-Hua Yang1** |
1 Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
3Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Beijing 100083
4Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokolowska 29/37, Warsaw 01142, Poland
5Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Univ., Montpellier 2, pl. Eugene Bataillon, Montpellier 34095, France |
|
Cite this article: |
Long Bai, Wei Yan, Zhao-Feng Li et al 2016 Chin. Phys. Lett. 33 067201 |
|
|
Abstract Surface leakage currents of AlGaN/GaN high electron mobility transistors are investigated by utilizing a circular double-gate structure to eliminate the influence of mesa leakage current. Different mechanisms are found under various passivation conditions. The mechanism of the surface leakage current with Al$_{2}$O$_{3}$ passivation follows the two-dimensional variable range hopping model, while the mechanism of the surface leakage current with SiN passivation follows the Frenkel–Poole trap assisted emission. Two trap levels are found in the trap-assisted emission. One trap level has a barrier height of 0.22 eV for the high electric field, and the other trap level has a barrier height of 0.12 eV for the low electric field.
|
|
Received: 15 January 2016
Published: 30 June 2016
|
|
PACS: |
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
79.60.Bm
|
(Clean metal, semiconductor, and insulator surfaces)
|
|
81.65.Rv
|
(Passivation)
|
|
|
|
|
[1] |
Hao Y, Zhang J F, Shen B and Liu X Y 2012 J. Semicond. 33 081001 |
[2] |
Li M, Wang Y, Wong K M and Lau K M 2014 Chin. Phys. B 23 038403 |
[3] |
Miller E J, Dang X Z and Yu E T 2000 J. Appl. Phys. 88 5951 |
[4] |
Xu C, Wang J Y, Chen H W, Xu F J, Dong Z H, Hao Y L and Wen C P 2007 IEEE Electron Device Lett. 28 942 |
[5] |
Liu P, Xie C, Zhang F, Chen J and Chen D 2013 IEEE Electron Device Lett. 34 1232 |
[6] |
Zheng B S, Chen P Y, Yu C J, Chang Y F, Ho C L, Wu M C and Hsieh K C 2015 IEEE Electron Device Lett. 36 932 |
[7] |
Tan W S, Uren M J, Houston P A, Green R T, Balmer R S and Martin T 2006 IEEE Electron Device Lett. 27 1 |
[8] |
Kotani J, Tajima M, Kasai S and Hashizume T 2007 Appl. Phys. Lett. 91 093501 |
[9] |
Liu Z H, Ng G I, Zhou H, Arulkumaran S and Maung Y K T 2011 Appl. Phys. Lett. 98 113506 |
[10] |
Chen Y H, Zhang K, Cao M Y, Zhao S L, Zhang J C, Ma X H and Hao Y 2014 Appl. Phys. Lett. 104 153509 |
[11] |
Shul R J, Zhang L, Baca A G, Willison C G, Han J, Pearton S J and Ren F 2000 J. Vac. Sci. Technol. A 18 1139 |
[12] |
Mott N F and Davis E A 2012 Electronic Processes in Non-Crystalline Materials 2nd edn (Oxford: Oxford University Press) p 32 |
[13] |
Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|