CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
First-Principles Calculation on Geometric, Electronic and Optical Properties of Fully Fluorinated Stanene: a Large-Gap Quantum Spin Hall Insulator |
Hong Wu1, Feng Li2** |
1Department of Physics, Nanjing University of Posts and Telecommunications, Nanjing 210023 2College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023
|
|
Cite this article: |
Hong Wu, Feng Li 2016 Chin. Phys. Lett. 33 067101 |
|
|
Abstract The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental interests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene (SnF) by means of density functional theory. Remarkably, a significant spin-orbit coupling is observed for the SnF monolayer in the valence band at the ${\it \Gamma}$ point, with a considerable indirect band gap of 278 meV. The direct gap of the SnF monolayer is at the ${\it \Gamma}$ point, which is slightly larger by as much as 381 meV. In addition, the elastic modulus of the SnF monolayer is about 20 J/m$^{2}$, which is comparable with the in-plane stiffness of black phosphorus monolayer along the $x$-direction ($\sim$28.94 J/m$^{2})$. Finally, the optical properties of stanene, SnF monolayer and stanene/SnF bilayer are calculated, in which the stanene/SnF bilayer is supposed to be an attractive sunlight absorber.
|
|
Received: 13 January 2016
Published: 30 June 2016
|
|
PACS: |
71.20.Gj
|
(Other metals and alloys)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [2] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | [3] | Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y and Golberg D 2010 Nano Lett. 10 5049 | [4] | Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627 | [5] | Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, K?pf M, Nilges T and Zhou C 2015 ACS Nano 9 5618 | [6] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 | [7] | Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74 | [8] | Miwa J A, Dendzik M, Gr?nborg S S, Bianchi M, Lauritsen J V, Hofmann P and Ulstrup S 2015 ACS Nano 9 6502 | [9] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 | [10] | Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768 | [11] | Lalmi B, Oughaddou H, Enriquez H, Kara A and Vizzini S 2010 Appl. Phys. Lett. 97 223109 | [12] | Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2010 Appl. Phys. Lett. 97 112106 | [13] | Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 | [14] | Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L and Wu K H 2012 Nano Lett. 12 3507 | [15] | Kaloni T P and Schwingenschl?gl U 2013 Chem. Phys. Lett. 583 137 | [16] | Li L Y and Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853 | [17] | Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414 | [18] | Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820 | [19] | Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 | [20] | Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804 | [21] | Ma Y D, Dai Y, Guo M, Niu C W and Huang B B 2012 J. Phys. Chem. C 116 12977 | [22] | Ding Y and Wang Y L 2015 J. Phys. Chem. C 119 27848 | [23] | Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E and Snow E S 2010 Nano Lett. 10 3001 | [24] | Samarakoon D K, Chen Z F, Nicolas C and Wang X Q 2011 Small 7 965 | [25] | Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J and Rotenberg E 2011 ACS Nano 5 1042 | [26] | ?ahin H, Topsakal M and Ciraci S 2011 Phys. Rev. B 83 115432 | [27] | Kashtiban R J, Dyson M A, Nair R R, Zan R, Wong S L, Ramasse Q, Geim A K, Bangert U and Sloan J 2014 Nat. Commun. 5 4902 | [28] | Zhou J, Wu M M, Zhou X and Sun Q 2009 Appl. Phys. Lett. 95 103108 | [29] | Ding Y and Wang Y 2012 Appl. Phys. Lett. 100 083102 | [30] | Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442 | [31] | Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906 | [32] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | [33] | Paier J, Marsman M, Hummer K, Kresse G and Gerber I C 2006 J. Chem. Phys. 124 154709 | [34] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | [35] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [36] | Jiang S S, Arguilla M Q, Cultrara N D and Goldberger J E 2015 Acc. Chem. Res. 48 144 | [37] | Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 | [38] | Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 | [39] | Xiao J, Long M Q, Zhang X J, Ouyang J, Xu H and Gao Y L 2015 Sci. Rep. 5 09961 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|