Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 065201    DOI: 10.1088/0256-307X/33/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Mega-Electron-Volt Electron Scattering and Radiography of Plasma
Xue-Juan Wu, Xiao-Fang Wang**, Xiao-Hu Chen
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Xue-Juan Wu, Xiao-Fang Wang, Xiao-Hu Chen 2016 Chin. Phys. Lett. 33 065201
Download: PDF(705KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Monte Carlo code is developed to study mega-electron-volt (MeV) electron scattering and transport in plasma based on multiple scattering. A scaling law relating the angular width of a scattered beam to the incident electron energy and the areal density of plasma is found, which may provide a method of MeV electron radiography for diagnosing the areal density of high-temperature, dense plasma under fusion conditions. The study on the MeV electron beam radiography also shows that plasma density interfaces could be discriminated by electron scattering.
Received: 07 January 2016      Published: 30 June 2016
PACS:  52.25.Tx (Emission, absorption, and scattering of particles)  
  52.65.Pp (Monte Carlo methods)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/065201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/065201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Juan Wu
Xiao-Fang Wang
Xiao-Hu Chen
[1]Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[2]Mangles S P D, Murphy C D, Najmudin Z et al 2004 Nature 431 535
[3]Geddes C G R, Toth Cs, Tilborg J V et al 2004 Nature 431 538
[4]Faure J, Glinec Y, Pukhov A et al 2004 Nature 431 541
[5]Kim H T, Pae K H, Cha H J et al 2013 Phys. Rev. Lett. 111 165002
[6]Wang X, Zgadzaj R, Fazel N et al 2013 Nat. Commun. 4 1988
[7]Zhu P, Zhang Z, Chen L et al 2010 Appl. Phys. Lett. 97 211501
[8]Li J, Wang X, Chen Z et al 2010 J. Appl. Phys. 107 083305
[9]Zhu P F, Zhang Z C, Chen L et al 2010 Rev. Sci. Instrum. 81 103505
[10]Zhu P, Chen J, Li R et al 2013 Appl. Phys. Lett. 103 231914
[11]Inoue S, Tokita S, Otani K et al 2011 Appl. Phys. Lett. 99 031501
[12]Schumaker W, Nakanii N, McGuffey C et al 2013 Phys. Rev. Lett. 110 015003
[13]Mangles S P D, Walton B R, Najmudin Z et al 2006 Laser Part. Beams 24 185
[14]Ramanathan V, Banerjee S, Powers N et al 2010 Phys. Rev. ST Accel. Beams 13 104701
[15]Bussolino G C, Faenov A, Giulietti A et al 2013 J. Phys. D: Appl. Phys. 46 245501
[16]Atzeni S, Schiavi A and Davies J R 2009 Plasma Phys. Control Fusion 51 015016
[17]Solodov A A and Betti R 2008 Phys. Plasmas 15 042707
[18]Wang X L, Li C, Shao M and Chen H F 2009 Particle Detection Techniques (Hefei: USTC Press) p 27 (in Chinese)
[19]Atzeni S and Meyer-ter-vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) p 37
[20]Frenje J A, Casey D T, Li C K et al 2010 Phys. Plasmas 17 056311
[21]Rygg J R, Séguin F H, Li C K et al 2008 Science 319 1223
[22]Marshall F J, McKenty P W, Delettrez J A et al 2009 Phys. Rev. Lett. 102 185004
[23]Li C K, Séguin F H, Frenje J A et al 2006 Phys. Rev. Lett. 97 135003
[24]Cecchetti C A, Borghesi M, Fuchs J et al 2009 Phys. Plasmas 16 043102
[25]Tabak M, Hammer J, Glinsky M E et al 1994 Phys. Plasmas 1 1626
[26]Li Y T, Yuan X H, Xu M H et al 2006 Phys. Rev. Lett. 96 165003
Related articles from Frontiers Journals
[1] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 065201
[2] Yi-Ying Wu, Quan-Li Dong, Zhao-Hua Wang, Ping Liu, Cheng-Zhen Wang, Yi-Hui Zhang, Zheng-Ming Sheng, Jie Zhang. Electron Dynamics and Characteristics of Attosecond Electromagnetic Emissions in Relativistic Laser-Plasma Interactions[J]. Chin. Phys. Lett., 2018, 35(9): 065201
[3] PENG Xiao-Niu, WANG Ya-Lan, WANG Hao. The Evolution of the Extinction and Growth Mechanism of the Silver Nanoplates[J]. Chin. Phys. Lett., 2015, 32(11): 065201
[4] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 065201
[5] CHEN Ye-Bin, CHEN Kai-Yun, XU Li-Qing, ZHOU Rui-Jie, HU Li-Qun. Observation of Runaway Electrons with Soft X-Ray Camera on HT-7 Tokamak[J]. Chin. Phys. Lett., 2014, 31(12): 065201
[6] GAO Yi, YIN Jia-Hui, SUN Jian-Feng, ZHANG Zhong, ZHANG Peng-Fei, SU Zhao-Feng. Electron Emission Suppression from Cathode Surfaces of a Rod-Pinch Diode[J]. Chin. Phys. Lett., 2010, 27(5): 065201
[7] CAO Min, WANG Meng, GU Ning. Calculated Optical Properties of Dielectric Shell Coated Gold Nanorods[J]. Chin. Phys. Lett., 2009, 26(4): 065201
[8] LI Xiao-Yun, XIA Yu-Xing, HUANG Ju-Ming, ZHAN Li. Diagnosis of Multiple Gases Separated from Transformer Oil Using Cavity-Enhanced Raman Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(9): 065201
[9] LI Xiao-Yun, XIA Yu-Xing, ZHAN Li, LENG Jiang-Hua. Large Relative Raman Shift for Molecules Adsorbed on Metallic Nano-particles[J]. Chin. Phys. Lett., 2008, 25(6): 065201
[10] CHEN Zhong-Yong, WAN Bao-Nian, LING Bi-Li, GAO Xiang, DU Qin, TI Ang, LIN Shi-Yao, S. Sajjad, HT- Team. Runaway Electron Beam Instability in Slide-Away Discharges in the HT-7 Tokamak[J]. Chin. Phys. Lett., 2007, 24(11): 065201
[11] ZHU Shao-Li, LUO Xian-Gang, DU Chun-Lei. Discrete Dipole Approximation Aided Design Method for Nanostructure Arrays[J]. Chin. Phys. Lett., 2007, 24(10): 065201
[12] PENG Feng, JIANG Gang, ZHU Zheng-He. Spectrum Simulation of Li-Like Aluminium Plasma[J]. Chin. Phys. Lett., 2006, 23(12): 065201
Viewed
Full text


Abstract