Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 064204    DOI: 10.1088/0256-307X/33/6/064204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Component Model for Bidirectional Reflection Distribution Function of Thermal Coating Surfaces
Hong Liu1,2, Jing-Ping Zhu1**, Kai Wang1, Xiu-Hong Wang2, Rong Xu2
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049
2The State Key Laboratory of Astronautic Dynamics, Xi'an Satellite Control Center, Xi'an 710043
Cite this article:   
Hong Liu, Jing-Ping Zhu, Kai Wang et al  2016 Chin. Phys. Lett. 33 064204
Download: PDF(734KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered $N$th cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.
Received: 20 February 2016      Published: 30 June 2016
PACS:  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.68.+m (Optical properties of surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/064204       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/064204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong Liu
Jing-Ping Zhu
Kai Wang
Xiu-Hong Wang
Rong Xu
[1]Zhang Y, Wang Z and Zhao H 2014 SPIE Conference Series 92731X-10
[2]Zhong Y, Shen L F, Ran L X et al 2006 Chin. Phys. Lett. 23 1296
[3]Cao Y H et al 2008 Acta Photonic. Sin. 37 2264 (in Chinese)
[4]Smith S M 1982 25th Annual Technical Symposium International Society for Optics and Photonics p 205
[5]Drolen B L 2012 J. Thermophys. Heat Transfer 6 672
[6]Nicodemus F E 1965 Appl. Opt. 4 767
[7]Westlund et al 2002 J. Res. Natl. Inst. Stand. Technol. 107 247
[8]Brian G H and Victor L G 2006 J. Opt. Soc. Am. 23 314
[9]Guo R P and Tao Z 2009 Opt. Lasers Eng. 47 1205
[10]Torrance K E and Sparrow E M 1967 J. Opt. Soc. Am. 57 1105
[11]Hyde M W, Schmidt J D and Havrilla M J 2009 Opt. Express 17 22138
[12]Priest R G and Meier S R 2002 Opt. Eng. 41 988
[13]Bai L et al 2014 Opt. Express 22 8515
[14]Blinn J F 1977 Siggraph 77 Conference on Computer Graphics Interactive Technique p 192
[15]Michael A and Peter S 2000 J. Graphics Tools 5 25
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 064204
[2] LIAO Kang-Jia, WANG Mei-Ling, ZHANG Gui-Ying, ZHAO Kai-Feng. Time-Resolved Measurements of the Adsorption/Desorption of Rb Atoms on Octadecyltrichlorosilane Coated Surfaces[J]. Chin. Phys. Lett., 2015, 32(07): 064204
[3] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 064204
[4] LIU Guo-Chang, LI Chao, SHAO Jin-Jin, FANG Guang-You. Distributed Field Rotator Composed of Isolated Components[J]. Chin. Phys. Lett., 2014, 31(04): 064204
[5] JIN Da-Lin, HONG Jing-Song, XIONG Han. Dual Wideband Antenna for WLAN/WiMAX and Satellite System Applications Based on a Metamaterial Transmission Line[J]. Chin. Phys. Lett., 2012, 29(10): 064204
[6] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 064204
[7] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 064204
[8] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 064204
[9] YAN Ying-Zhan, JI Zhe, YAN Shu-Bin**, LIU Jun, XUE Chen-Yang, ZHANG Wen-Dong, XIONG Ji-Jun** . Enhancing the Robustness of the Microcavity Coupling System[J]. Chin. Phys. Lett., 2011, 28(3): 064204
[10] LIN Yan-He, ZHU Qi-Biao, ZHANG Yan,. Opposite Goos-Hänchen Displacements for TE- and TM-Polarized Beams Transmitting through a Slab of Indefinite Metamaterial[J]. Chin. Phys. Lett., 2010, 27(7): 064204
[11] SUN Wen-Feng, WANG Xin-Ke, ZHANG Yan. Measurement of Refractive Index for High Reflectance Materials with Terahertz Time Domain Reflection Spectroscopy[J]. Chin. Phys. Lett., 2009, 26(11): 064204
[12] LI Gang, ZHANG Yi, XU Yan-Ji, LIN Bin, LI Yu-Tong, ZHU Jun-Qiang. Measurement of Plasma Density Produced in Dielectric Barrier Discharge for Active Aerodynamic Control with Interferometer[J]. Chin. Phys. Lett., 2009, 26(10): 064204
[13] JIANG Tao, CUI Wan-Zhao, MA Wei, YUAN Yu, WANG Dong-Xing, RANLi-Xin. High Directive Cavity Antenna Based on One-Dimensional LHM-RHM Resonator[J]. Chin. Phys. Lett., 2009, 26(10): 064204
[14] ZHANG Zhi-Wei, WEN Ting-Dun, ZHANG Ji-Long,. A Novel Method for Enhancing Goos-Hänchen Shift in Total Internal Reflection[J]. Chin. Phys. Lett., 2009, 26(3): 064204
[15] CHENG Min, CHEN Rong. Positive and Negative Lateral Shifts from an Anisotropic Metamaterial Slab Backed by a Metal[J]. Chin. Phys. Lett., 2009, 26(1): 064204
Viewed
Full text


Abstract