Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 060301    DOI: 10.1088/0256-307X/33/6/060301
GENERAL |
Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model
Hui Zhou1, Zhao-Kai Li1,2**, Heng-Yan Wang1, Hong-Wei Chen3, Xin-Hua Peng1,2**, Jiang-Feng Du1
1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
3High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
Hui Zhou, Zhao-Kai Li, Heng-Yan Wang et al  2016 Chin. Phys. Lett. 33 060301
Download: PDF(1239KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin $XY$ model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
Received: 14 March 2016      Published: 30 June 2016
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.30.Rt (Quantum phase transitions)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
  64.70.-p (Specific phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/060301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Zhou
Zhao-Kai Li
Heng-Yan Wang
Hong-Wei Chen
Xin-Hua Peng
Jiang-Feng Du
[1]Berry M V 1984 Proc. R. Soc. A 329 45
[2]Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[3]Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[4]Sj?qvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[5]Tong D M, Sj?qvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[6]Tomita A and Chiao R Y 1986 Phys. Rev. Lett. 57 937
[7]Bitter T and Dubbers D 1987 Phys. Rev. Lett. 59 251
[8]Suter D, Mueller K T and Pines A 1988 Phys. Rev. Lett. 60 1218
[9]Leek P J, Fink J M, Blais A, Bianchetti R, G?ppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889
[10]Morpurgo A F, Heida J P, Klapwijk T M, van Wees B J and Borghs G 1998 Phys. Rev. Lett. 80 1050
[11]Niu Q, Wang X, Kleinman L, Liu W M, Nicholson D M C and Stocks G M 1999 Phys. Rev. Lett. 83 207
[12]Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[13]Zhu S L 2006 Phys. Rev. Lett. 96 077206
[14]Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[15]Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[16]Zhang J, Peng X, Rajendran N and Suter D 2008 Phys. Rev. Lett. 100 100501
[17]Peng X, Wu S, Li J, Suter D and Du J 2010 Phys. Rev. Lett. 105 240405
[18]Peng X, Zhu X, Fang X, Feng M, Gao K, Yang X and Liu M 2001 Chem. Phys. Lett. 340 509
[19]Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T and Glaser S J 2005 J. Magn. Reson. 172 296
[20]Lee S J 2002 Phys. Lett. A 305 349
[21]Ernst R R, Bodenhausen G and Wokaun A 1987 Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford: Oxford University Press)
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 060301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 060301
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 060301
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 060301
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 060301
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 060301
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 060301
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 060301
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 060301
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 060301
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 060301
[14] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 060301
[15] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 060301
Viewed
Full text


Abstract