Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 050401    DOI: 10.1088/0256-307X/33/5/050401
GENERAL |
A New Solution in Understanding Massive White Dwarfs
Zhen-Zhen Jing, De-Hua Wen**
School of Sciences, South China University of Technology, Guangzhou 510641
Cite this article:   
Zhen-Zhen Jing, De-Hua Wen 2016 Chin. Phys. Lett. 33 050401
Download: PDF(511KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The observed high over-luminous type-Ia supernovae imply the existence of super-Chandrasekhar limit white dwarfs, which raises a challenge to the classical white dwarf theories. By employing the Eddington-inspired Born–Infeld (EiBI) gravity, we reinvestigate the structures and properties of white dwarfs, and find out that the EiBI gravity provides a new way to understand the observations. It is shown that by choosing an appropriate positive Eddington parameter $\kappa$, a massive white dwarf with mass up to $2.8M_\odot$ can be supported by the equation of state of free electron gas. Unlike the classical white dwarf theory, the maximum mass of the white dwarf sequence in the EiBI gravity is not decided by the mass–radius relations, but is decided by the central density, $\rho_{\rm c}=4.3\times10^{14}$ kg/m$^3$, above which neutronization cannot be avoided and the white dwarf will transform into a neutron star. On the other hand, if the gravity in the massive white dwarf really behaves as the EiBI gravity predicts, then one can obtain a constraint on the Eddington parameter in the EiBI gravity, that is, $8\pi{\rho_0}\kappa G/c^2\geq 80$ (where $\rho_0=10^{18}$ kg/m$^3$) to support a massive white dwarf with mass up to $2.8M_\odot$. Moreover, we find out that the fast Keplarian frequency of the massive white dwarf raises a degeneration between the two kinds of compact stars, that is, one cannot distinguish whether the observed massive pulsar is a massive neutron star or a massive white dwarf only through the observed pulse frequency and mass.
Received: 06 January 2016      Published: 31 May 2016
PACS:  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  95.30.Sf (Relativity and gravitation)  
  98.38.Mz (Supernova remnants)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/050401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/050401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhen-Zhen Jing
De-Hua Wen
[1]Chandrasekhar S 1935 Mon. Not. R. Astron. Soc. 95 207
[2]Howell D A et al 2006 Nature 443 308
[3]Scalzo R A 2010 Astrophys. J. 713 1073
[4]Hicken M et al 2007 Astrophys. J. 669 L17
[5]Yamanaka M et al 2009 Astrophys. J. 707 L118
[6]Silverman J M et al 2011 Mon. Not. R. Astron. Soc. 410 585
[7]Taubenberger S et al 2011 Mon. Not. R. Astron. Soc. 412 2735
[8]Hachisu I et al 2012 Astrophys. J. 744 69
[9]Yoon S C and Langer N 2005 Astron. Astrophys. 435 967
[10]Das U and Mukhopadhyay B 2012 Phys. Rev. D 86 042001
[11]Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102
[12]Liu H L et al 2014 Phys. Rev. D 89 104043
[13]Das U and Mukhopadhyay B 2015 J. Cosmol. Astropart. Phys. 05 045
[14]Das U and Mukhopadhyay B 2015 arXiv:1506.02779v1
[15]Wen D H et al 2014 Chin. Phys. B 23 089501
[16]Demorest P B et al 2010 Nature 467 1081
[17]Antoniadis J et al 2013 Science 340 1233232
[18]Jiang W Z et al 2012 Astrophys. J. 756 56
[19]Orsaria M et al 2013 Phys. Rev. D 87 023001
[20]Mallick R 2013 Phys. Rev. C 87 025804
[21]Zdunik J L and Haensel P 2013 Astron. Astrophys. 551 A61
[22]Jing Z Z et al 2015 Sci. Chin. Phys. Mech. Astron. 58 109501
[23]Wen D H et al 2009 Phys. Rev. Lett. 103 211102
[24]Pani P et al 2012 Phys. Rev. D 85 084020
[25]Yazadjiev S S et al 2014 arXiv:1402.4469v1[gr-qc]
[26]Ba?ados M and Ferreira P G 2010 Phys. Rev. Lett. 105 011101
[27]Pani P et al 2011 Phys. Rev. Lett. 107 031101
[28]Sham Y H et al 2012 Phys. Rev. D 86 064015
[29]Sham Y H et al 2013 Phys. Rev. D 87 061503
[30]Harko T et al 2013 Phys. Rev. D 88 044032
[31]Sham Y H et al 2014 Astrophys. J. 781 6
[32]Delsate T and Steinhoff J 2012 Phys. Rev. Lett. 109 021101
[33]Scalzo R A et al 2010 Astrophys. J. 713 1073
[34]Glendenning N K and Weber F 1992 Astrophys. J. 400 647
[35]Glendenning N K 2000 Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (New York: Springer) chap 6 p 291
[36]Boshkayev K et al 2013 Astron. Astrophys. 555 151
Related articles from Frontiers Journals
[1] M. Azam, S. A. Mardan, M. A. Rehman. The Stability of Some Viable Stars and Electromagnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 050401
[2] Xiu-Ming Zhang, Wei Fu. Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores[J]. Chin. Phys. Lett., 2016, 33(01): 050401
[3] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 050401
[4] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 050401
[5] WEN De-Hua. Equation of State in the σ-ω-ρ Model Supported by the Observational Data of 4U 1608-52 Neutron Star[J]. Chin. Phys. Lett., 2010, 27(1): 050401
[6] CHEN Xia, WANG Yong-Jiu. The character of an anisotropic and spherically symmetric star in the presence of a cosmological constant[J]. Chin. Phys. Lett., 2009, 26(7): 050401
[7] LUO Xin-Lian, BAI Hua, ZHAO Lei. Double Degenerate Stars[J]. Chin. Phys. Lett., 2008, 25(7): 050401
[8] TIAN Gui-Hua, WANG Shi-Kun, ZHONG Shu-Quan. Approach to a Cauchy Problem in Stability Study of the Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2007, 24(6): 050401
[9] WEN De-Hua, CHEN Wei, LU Yi-Gang, LIU Liang-Gang. Properties of Neutron Stars Rotating at Kepler Frequency with Uniform Strong Magnetic Field[J]. Chin. Phys. Lett., 2007, 24(3): 050401
[10] LIU Dao-Jun, LI Xin-Zhou. Cosmic Microwave Background Radiation Constraints on a Modified Chaplygin Gas Model[J]. Chin. Phys. Lett., 2005, 22(7): 050401
[11] WEN De-Hua, CHEN Wei, LIU Liang-Gang. Rotational Deformation of Neutron Stars[J]. Chin. Phys. Lett., 2005, 22(7): 050401
[12] A. Perez Martinez, H. Perez Rojas, H. J. Mosquera Cuesta. Possible Origin of Magnetic Fields in Very Dense Stars[J]. Chin. Phys. Lett., 2004, 21(11): 050401
Viewed
Full text


Abstract