Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 050301    DOI: 10.1088/0256-307X/33/5/050301
GENERAL |
Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence
Da-Chuang Li1,2,3**, Xian-Ping Wang4**, Hu Li1,2, Xiao-Man Li1,2, Ming Yang2, Zhuo-Liang Cao1,2
1Institute for Quantum Control and Quantum Information and School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601
2School of Physics and Material Science, Anhui University, Hefei 230039
3Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
4Department of Physics, Fuyang Teachers College, Fuyang 236041
Cite this article:   
Da-Chuang Li, Xian-Ping Wang, Hu Li et al  2016 Chin. Phys. Lett. 33 050301
Download: PDF(4613KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of pure Dzyaloshinskii–Moriya (DM) interaction with magnetic field on entanglement in intrinsic decoherence, assuming that the system is initially in four Bell states $|\phi_{\pm}\rangle=(|00\rangle\pm|11\rangle)/\sqrt{2}$ and $|\psi_{\pm}\rangle=(|01\rangle\pm|10\rangle)/\sqrt{2}$, respectively. It is found that if the system is initially in the state $\rho_{1}(0)=|\phi_{+}\rangle\langle\phi_{+}|$, the entanglement can obtain its maximum when the DM interaction vector ${\boldsymbol D}$ is in the plane of $XOZ$ and magnetic field ${\boldsymbol B}={\boldsymbol B_{y}}$ with the infinite time $t$, moreover the entanglement is independent of $B_{y}$ and $t$ when ${\boldsymbol B_{y}}$ is perpendicular to ${\boldsymbol D}$. In addition, we obtain similar results when the system is initially in the states $\rho_{2}(0)=|\phi_{-}\rangle\langle\phi_{-}|$ or $\rho_{3}(0)=|\psi_{+}\rangle\langle\psi_{+}|$. However, we find that if the system is initially in the state $\rho_{4}(0)=|\psi_{-}\rangle\langle\psi_{-}|$, the entanglement can obtain its maximum for infinite $t$, when the DM vector is in the plane of $YOZ$, $XOZ$, or $XOY$, with the magnetic field parallel to $X$, $Y$, or $Z$ axis, respectively. Moreover, when the axial ${\boldsymbol B}$ is perpendicular to ${\boldsymbol D}$ for the initial state $\rho_{4}(0)$, the negativity oscillates with time $t$ and reaches a stable value, the larger the value of ${\boldsymbol B}$ is, the greater the stable value is, and the shorter the oscillation time of the negativity is. Thus we can adjust the direction and value of the external magnetic field to obtain the maximal entanglement, and avoid the adverse effects of external environment in some initial state. This is feasible within the current experimental technology.
Received: 19 January 2016      Published: 31 May 2016
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/050301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Da-Chuang Li
Xian-Ping Wang
Hu Li
Xiao-Man Li
Ming Yang
Zhuo-Liang Cao
[1]Bennett C H and Sicincenzo D P 2000 Nature 404 247
[2]Murao M et al 1999 Phys. Rev. A 59 156
[3]Berezovsky J et al 2005 Phys. Rev. B 71 081309
[4]Milburn G J 1991 Phys. Rev. A 44 5401
[5]Moya-Cessa H et al 1993 Phys. Rev. A 48 3900
[6]Xu J B, Zou X B and Yu J H 2000 Eur. Phys. J. D 10 295
[7]Yu R M and Yang G H 2013 Int. J. Theor. Phys. 52 1621
[8]Mohamed A B A 2013 Quantum Inf. Process. 12 1141
[9]Mohammadi H et al 2011 Eur. Phys. J. D 62 439
[10]Guo G L, Li Z D and Sun Y B 2011 Opt. Commun. 284 1461
[11]He Z H, Xiong Z H and Zhang Y L 2006 Phys. Lett. A 354 79
[12]Yu P F et al 2007 Eur. Phys. J. D 44 151
[13]Shao B et al 2005 Commun. Theor. Phys. 44 255
[14]Guo J L, Xia Y and Song H S 2008 Opt. Commun. 281 2326
[15]Pourkarimi M R et al 2014 arXiv:1211.5907v2 [quant-ph]
[16]Shen C G et al 2014 Chin. Phys. B 23 050310
[17]Zou Q et al 2015 Acta Phys. Sin. 64 080302 (in Chinese)
[18]Li D C and Cao Z L 2008 Eur. Phys. J. D 50 207
[19]Li D C et al 2008 J. Phys.: Condens. Matter 20 325229
[20]Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[21]Liu B Q et al 2011 Phys. Rev. A 83 052112
[22]Liu C C et al 2015 Int. J. Mod. Phys. B 29 1550005
[23]Gurkan Z N and Pashaev O K 2010 Int. J. Mod. Phys. B 24 943
[24]McElearney J N and Merchant S 1978 Phys. Rev. B 18 3612
[25]Li D C et al 2015 Chin. Phys. Lett. 32 050302
[26]Kheirandish F et al 2008 Phys. Rev. A 77 042309
[27]Vidal G et al 2002 Phys. Rev. A 65 032314
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 050301
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050301
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 050301
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 050301
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 050301
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 050301
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 050301
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 050301
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 050301
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 050301
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 050301
[12] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 050301
[13] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 050301
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 050301
[15] Yong-Gang Tan, Yao-Hua Hu, Hai-Feng Yang. Biased Random Number Generator Based on Bell's Theorem[J]. Chin. Phys. Lett., 2016, 33(03): 050301
Viewed
Full text


Abstract